Advertisement

Journal of Mathematical Imaging and Vision

, Volume 51, Issue 2, pp 260–278 | Cite as

A Linear Elastic Force Optimization Model for Shape Matching

  • Konrad SimonEmail author
  • Sameer Sheorey
  • David Jacobs
  • Ronen Basri
Article

Abstract

We employ an elasticity based model to account for shape changes. In general, to solve the underlying equations for the deformation, boundary conditions have to be incorporated, e.g., in the form of correspondences between contour points. However, exact boundary correspondences are usually unknown. We propose a method that is able to optimize pre-selected boundary conditions such that external forces causing the shape change are minimized in some sense. Thus we seek simple physical explanations of shape change close to a pre-selected deformation. Our method decomposes the full nonlinear optimization problem into a sequence of convex optimizations. Artificial and natural examples of shape change are given to demonstrate the plausibility of the algorithm.

Keywords

Shape matching Convex optimization Force optimization Linear elasticity Finite elements 

Notes

Acknowledgments

This research was supported in part by the U.S.-Israel Binational Science Foundation, Grant No. 2010331, by the Israel Science Foundation, Grant No. 764/10, by the Israel Ministry of Science, by the National Science Foundation, Grant No. 0915977, and by the Citigroup Foundation.

References

  1. 1.
    Agudo, A., Calvo, B., Montiel, J.M.M.: Finite element based sequential Bayesian non-rigid structure from motion. Computer Vision and Pattern Recognition, pp. 1522–1529 (2013)Google Scholar
  2. 2.
    Amit, Y.: A nonlinear variational problem for image matching. SIAM J. Sci. Comput. 15(1), 207–224 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Amit, Y.: A non-linear variational problem for image matching. SIAM J. Sci. Comput. 15(1), 1–30 (1994)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Applied Mathematical Sciences, Vol. 107 (1995)Google Scholar
  5. 5.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)CrossRefGoogle Scholar
  6. 6.
    Braess, D.: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  7. 7.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shape. International Conference on Computer Vision, pp. 1395–1402 (2005)Google Scholar
  8. 8.
    Bro-Nielsen, M.: Finite Elements Modeling in Surgery Simulation. Proc. IEEE 86(3), 490–503 (1998)Google Scholar
  9. 9.
    Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Analysis of two-dimensional non-rigid shapes. Int. J. Comput. Vision 78(1), 67–88 (2008)CrossRefGoogle Scholar
  10. 10.
    Ciarlet, P.G.: Mathematical Elasticity. Volume I: Three-Dimensional Theory, Series “Studies in Mathematics and its Applications”, North-Holland, Amsterdam (1988)Google Scholar
  11. 11.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)CrossRefGoogle Scholar
  12. 12.
    Clarenz Wang, U., Droske, M., Henn, S., Rumpf, M., Witsch, K.: Computational methods for nonlinear image registration. Mathematical Models for Registration and Applications to Medical Imaging, Mathematics in Industry, Vol. 10 (2006)Google Scholar
  13. 13.
    Cremers, D.: Dynamical statistical shape priors for level set based tracking. Transactions on Pattern Analysis and Machine Intelligence, Vol. 28 (2008)Google Scholar
  14. 14.
    Davatzikos, C., Prince, J.L.: Brain Image Registration Based on Curve Mapping, pp. 245–254. IEEE Workshop Biomedical Image, Analysis (1994)Google Scholar
  15. 15.
    Dupuis, P., Grenander, U., Miller, M.I.: Variational Problems on Flows of Diffeomorphisms for Image Matching, pp. 587–600. Quarterly of Applied Mathematics, LVI (1998)Google Scholar
  16. 16.
    Evans, L.C.: Partial Differential Equations Graduate Studies in Mathematics, Vol. 19, AMS (2010)Google Scholar
  17. 17.
    Ferrant, M., Warfield, S.K., Guttmann, C.R.G., Mulkern, R.V., Jolesz, F.A., Kikinis, R.: 3D Image Matching Using a Finite Element Based Elastic Deformation Model. Proceedings of MICCAI 1999, LNCS 1679, pp. 202–209 (1999)Google Scholar
  18. 18.
    Ferrant, M., Warfield, S.K., Nabavi, A., Jolesz, F.A., Kikinis, R.: Registration of 3D Intraoperative MR Images of the Brain Using a Finite Element Biomechanical Model. Proceedings of MICCAI 2000, LNCS 1935, pp. 19–28 (2000)Google Scholar
  19. 19.
    Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imag Vision 35, 86–102 (2009)CrossRefGoogle Scholar
  20. 20.
    Grenander, U., Miller, M.: Pattern Theory: From Representation to Inference. Oxford University Press, Oxford (2007)Google Scholar
  21. 21.
    Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imag. 27(1), 111–128 (2008)CrossRefGoogle Scholar
  22. 22.
    Ilic, S., Fua, P.: Non-linear beam model for tracking large deformations. International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  23. 23.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  24. 24.
    Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. Handbook Numer. Anal. III, 465–622 (1994)CrossRefGoogle Scholar
  25. 25.
    Lin, T., Dinov, I., Toga, A., Vese, L.: Nonlinear Elastic Registration and Sobolev Gradients. Biomedical Image Registration, LNCS 6204, pp. 269–280 (2010)Google Scholar
  26. 26.
    Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings of the CACSD Conference (2004). http://users.isy.liu.se/johanl/yalmip
  27. 27.
    Malti, A., Hartley, R., Bartoli, A., Kim, Jae-Hak: Non-Linear Beam Model for Tracking Large Deformations. Computer Vision and Pattern Recognition, pp. 1522–1529 (2013)Google Scholar
  28. 28.
    Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vision 73(3), 307–324 (2007)CrossRefGoogle Scholar
  29. 29.
    Peckar, W., Schnörr, C., Rohr, K., Stiehl, H.S.: Parameter-free elastic deformation approach for 2D and 3D registration using prescribed displacements. J. Math. Imag. Vision 10(2), 143–162 (1999)CrossRefzbMATHGoogle Scholar
  30. 30.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics, 2nd edn. Texts in Applied Mathematics no. 37, Springer, New York (2007)Google Scholar
  31. 31.
    Rabbit, R.D., Weiss, J.A., Christensen, G.E., Miller, M.I., The Applied Mechanics Group (Lawrence Livermore National Laboratories, Livermore CA).: Mapping of Hyperelastic Deformable Templates Using the Finite Element Method. Proc. SPIE 2573, 252–265 (1995)Google Scholar
  32. 32.
    Sadd, M.H.: Elasticity. Applications, and Numerics, Elsevier Butterworth-Heinemann, Theory (2005)Google Scholar
  33. 33.
    Salzmann, M., Uratsun, R.: Physically-based motion models for 3D tracking: a convex formulation. International Conference on Computer Vision, pp. 2064–2071 (2011)Google Scholar
  34. 34.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of Shapes by Editing Shock Graphs International Conference on Computer Vision, pp. 755–762 (2001)Google Scholar
  35. 35.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Version 1.05 available from http://fewcal.kub.nl/sturm, Optimization Methods and Software, 11–12, pp. 625–653 (1999)
  36. 36.
    Wang, Y., Staib, L.H.: Elastic model based non-rigid registration incorporating statistical shape information. In Proceedings of MICCAI 1998, pp. 1162–1173 (1998)Google Scholar
  37. 37.
    Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Younes, L.: Optimal matching between shapes via elastic deformations. Image Vis. Comput. 17, 381–389 (1999)CrossRefGoogle Scholar
  39. 39.
    Younes, L.: Spaces and manifolds of shapes in computer vision: an overview. Image Vis. Comput. 30, 389–397 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Konrad Simon
    • 1
    Email author
  • Sameer Sheorey
    • 2
  • David Jacobs
    • 3
  • Ronen Basri
    • 1
  1. 1.Department of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.UtopiaCompression CorporationLos AngelesUSA
  3. 3.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations