Skip to main content
Log in

An Evaluation of the Sparsity Degree for Sparse Recovery with Deterministic Measurement Matrices

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The paper deals with the estimation of the maximal sparsity degree for which a given measurement matrix allows sparse reconstruction through 1-minimization. This problem is a key issue in different applications featuring particular types of measurement matrices, as for instance in the framework of tomography with low number of views. In this framework, while the exact bound is NP hard to compute, most classical criteria guarantee lower bounds that are numerically too pessimistic. In order to achieve an accurate estimation, we propose an efficient greedy algorithm that provides an upper bound for this maximal sparsity. Based on polytope theory, the algorithm consists in finding sparse vectors that cannot be recovered by 1-minimization. Moreover, in order to deal with noisy measurements, theoretical conditions leading to a more restrictive but reasonable bounds are investigated. Numerical results are presented for discrete versions of tomography measurement matrices, which are stacked Radon transforms corresponding to different tomograph views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 2
Algorithm 4
Fig. 3

Similar content being viewed by others

References

  1. Arias-Castro, E., Candès, E.J., Davenport, M.A.: On the fundamental limits of adaptive sensing. IEEE Trans. Inf. Theory 59(1), 472–481 (2013)

    Article  Google Scholar 

  2. Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012)

    Article  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of RIP matrices and related problems. Duke Math. J. 159(1), 145–185 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. (2013). doi:10.1002/cpa.21455

    Google Scholar 

  7. Candès, E.J., Romberg, J.: Practical signal recovery from random projections. In: Wavelet Applications in Signal and Image Processing XI. Proc. SPIE, vol. 5914 (2004)

    Google Scholar 

  8. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  9. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2010)

    Google Scholar 

  10. Cormack, A.M.: Sampling the Radon transform with beams of finite width. Phys. Med. Biol. 23(6), 1141–1148 (1978)

    Article  Google Scholar 

  11. Davenport, M., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to compressed sensing. In: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  12. DeVore, R.A.: Deterministic constructions of compressed sensing matrices. J. Complex. 23, 918–925 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donoho, D.L.: Neighborly polytopes and sparse solutions of underdetermined linear equations. Tech. rep., Department of Statistics, Stanford University (2004)

  14. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dossal, Ch., Peyré, G., Fadili, J.: A numerical exploration of compressed sampling recovery. Linear Algebra Appl. 432(7), 1663–1679 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Faridani, A.: Fan-bean tomography and sampling theory. Proc. Symp. Appl. Math. 63, 43–66 (2006)

    Article  MathSciNet  Google Scholar 

  17. Fuchs, J.: Recovery of exact sparse representations in the presence of bounded noise. IEEE Trans. Inf. Theory 51(10), 3601–3608 (2005)

    Article  Google Scholar 

  18. Fuchs, J.J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50(6), 1341–1344 (2004)

    Article  Google Scholar 

  19. Grasmair, M., Haltmeier, M., Scherzer, O.: Necessary and sufficient conditions for linear convergence of 1-regularization. Commun. Pure Appl. Math. LXIV, 161–182 (2010)

    MathSciNet  Google Scholar 

  20. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49(12), 3320–3325 (2003)

    Article  MathSciNet  Google Scholar 

  21. Gribonval, R., Nielsen, M.: Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl. Comp. Harm. Analysis 22(3), 335–355 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Juditsky, A., Nemirovski, A.: On verifiable sufficient conditions for sparse signal recovery via 1-minimisation. Math. Program., Ser. B 127, 57–88 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krzakala, F., Mézard, M., Sausset, F., Sun, Y.F., Zdeborová, L.: Statistical physics-based reconstruction in compressed sensing. Phys. Rev. X. 2(021005), x+18 (2012)

    Google Scholar 

  24. Liang, D., Zhang, H.F., Ying, L.: Compressed-sensing photoacoustic imaging based on random optical illumination. Int. J. Funct. Inform. Pers. Med. 2(4), 394–406 (2009)

    Google Scholar 

  25. Lindgren, A.G., Rattey, P.A.: The inverse discrete Radon transform with applications to tomographic imaging using projection data. Adv. Electron. Electron Phys. 56, 359–410 (1981)

    Article  Google Scholar 

  26. Lu, Y., Zhang, X., Douraghy, A., Stout, D., Tian, J., Chan, T.F., Chatziioannou, A.F.: Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information. Opt. Express 17(10), 8062–8080 (2009)

    Article  Google Scholar 

  27. Pustelnik, N., Dossal, Ch., Turcu, F., Berthoumieu, Y., Ricoux, P.: A greedy algorithm to extract sparsity degree for 1/ 0-equivalence in a deterministic context. In: Proc. Eur. Sig. and Image Proc. Conference, Bucharest, Romania pp. 859–863 (2012)

    Google Scholar 

  28. Rattey, P.A., Lindgren, A.G.: Sampling the 2-d Radon transforms. IEEE Trans. Acoust. Speech Signal Process. 29, 994–1002 (1981)

    Article  MathSciNet  Google Scholar 

  29. Starck, J.-L., Donoho, D., Fadili, M.J., Rassat, A.: Sparsity and the Bayesian Perspective. Astron. Astroph. 552, A133 (2013)

    Article  Google Scholar 

  30. Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52, 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers for their careful reading and relevants remarks that improve significatively the readability of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pustelnik.

Additional information

Part of this work will appear in the conference proceedings of EUSIPCO 2012 [27].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthoumieu, Y., Dossal, C., Pustelnik, N. et al. An Evaluation of the Sparsity Degree for Sparse Recovery with Deterministic Measurement Matrices. J Math Imaging Vis 48, 266–278 (2014). https://doi.org/10.1007/s10851-013-0453-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0453-4

Keywords

Navigation