Skip to main content
Log in

Local Mutual Information for Dissimilarity-Based Image Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Connective segmentation based on the definition of a dissimilarity measure on pairs of adjacent pixels is an appealing framework to develop new hierarchical segmentation methods. Usually, the dissimilarity is fully determined by the intensity values of the considered pair of adjacent pixels, so that it is independent of the values of the other image pixels. In this paper, we explore dissimilarity measures depending on the overall image content encapsulated in its local mutual information and show its invariance to information preserving transforms. This is investigated in the framework of the connective segmentation and constrained connectivity paradigms and leads to the concept of dependent connectivities. An efficient probability estimator based on depth functions is proposed to handle multi-dimensional images. Experiments conducted on hyper-spectral and multi-angular remote sensing images highlight the robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arbelaez, P., Cohen, L.: A metric approach to vector-valued image segmentation. Int. J. Comput. Vis. 69, 119–126 (2006). doi:10.1007/s11263-006-6857-5

    Article  Google Scholar 

  2. Baraldi, A., Parmiggiani, F.: Single linkage region growing algorithms based on the vector degree of match. IEEE Trans. Geosci. Remote Sens. 34(1), 137–148 (1996). doi:10.1109/36.481899

    Article  Google Scholar 

  3. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  4. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. In: Chiarcos, C., de Castilho, E.E., Stede, M. (eds.) Proceedings of the Biennial GSCL Conference 2009, pp. 31–40. Gunter Narr, Potsdam (2009)

    Google Scholar 

  5. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  6. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16, 22–29 (1990)

    Google Scholar 

  7. Comon, P.: Independent component analysis: a new concept. Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  9. Cuesta-Albertos, J.A., Nietos-Reyes, A.: The random Tukey depth. Comput. Stat. Data Anal. 52, 4979–4988 (2008)

    Article  MATH  Google Scholar 

  10. Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22(3), 481–496 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cui, X., Lin, L., Yang, G.: An extended projection data depth and its application to discrimination. Commun. Stat., Theory Methods 37(14), 2276–2290 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donoho, D., Gasko, M.: Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Appl. Stat. 20(4), 1803–1827 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2000)

    Google Scholar 

  14. Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969)

    Article  MathSciNet  Google Scholar 

  15. Green, A., Berman, M., Switzer, P., Craig, M.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26(1), 65–74 (1988). doi:10.1109/36.3001

    Article  Google Scholar 

  16. Gueguen, L., Datcu, M.: Mixed information measure: application to change detection in earth observation. In: MultiTemp 2009: The Fifth International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Connecticut, USA (2009)

    Google Scholar 

  17. Gueguen, L., Soille, P.: Frequent and dependent connectivities. In: Proc. of 10th Int. Symp. on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 120–131. Springer, Berlin (2011). doi:10.1007/978-3-642-21569-8_11

    Google Scholar 

  18. Gueguen, L., Soille, P., Pesaresi, M.: Change detection based on information measure. IEEE Trans. Geosci. Remote Sens. 49(11), 4503–4515 (2011). doi:10.1109/TGRS.2011.2141999

    Article  Google Scholar 

  19. Guigues, L., Cocquerez, J.-P., Le Men, H.: Scale-sets image analysis. Int. J. Comput. Vis. 68(3), 289–317 (2006). doi:10.1007/s11263-005-6299-0

    Article  Google Scholar 

  20. Gueguen, L., Velasco-Forero, S., Soille, P.: Edge extraction by statistical dependence analysis: application to multi-angular WorldView-2 series. In: IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, pp. 3447–3450 (2012). doi:10.1109/IGARSS.2012.6350679

    Google Scholar 

  21. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973). doi:10.1109/TSMC.1973.4309314s

    Article  Google Scholar 

  22. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vis. 50, 329–343 (2002). doi:10.1023/A:1020830525823

    Article  MATH  Google Scholar 

  23. Jaccard, P.: Distribution de la flore alpine dans le bassin des dranses et dans quelques regions voisines. Bull. Soc. Vaudoise Des. Sci. Nat. 37, 241–272 (1901)

    Google Scholar 

  24. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistics Analysis. Prentice Hall, New York (2007)

    Google Scholar 

  25. Johnstone, I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Appl. Stat. 29, 295–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Karacali, B.: Information theoretic deformable registration using local image information. Int. J. Comput. Vis. 72, 219–237 (2007). doi:10.1007/s11263-006-8704-0

    Article  Google Scholar 

  27. Kruse, F., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., Barloon, P., Goetz, A.: The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2–3), 145–163 (1993). doi:10.1016/0034-4257(93)90013-N

    Article  Google Scholar 

  28. Kruskal, J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, R.: On a notion of data depth based on random simplices. Ann. Appl. Stat. 18(1), 405–482 (1990)

    Article  MATH  Google Scholar 

  30. Longbotham, N., Emery, W., Bleiler, C., Chaapel, C., Padwick, C., Pacifici, F.: Spectral classification of WorldView-2 multi-angle sequence. In: IEEE International Geoscience & Remote Sensing Symposium, Vancouver, Canada (2011)

    Google Scholar 

  31. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997). doi:10.1109/42.563664

    Article  Google Scholar 

  32. Meila, M.: Comparing clusterings by the variation of information. In: Proc. 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel. Lecture Notes in Artificial Intelligence, vol. 2777, pp. 173–187 (2003). doi:10.1007/978-3-540-45167-9_14

    Google Scholar 

  33. Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Lecture Notes in Computer Science, vol. 1682, pp. 187–198. Springer, Berlin (1999)

    Google Scholar 

  34. Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. J. Vis. Commun. Image Represent. 11(3), 245–265 (2000). doi:10.1006/jvci.1999.0447

    Article  Google Scholar 

  35. Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comput. Graph. Image Process. 10(3), 195–223 (1979)

    Article  Google Scholar 

  36. Ouzounis, G., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Proc. of 10th Int. Symp. on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 108–119. Springer, Berlin (2011). doi:10.1007/978-3-642-21569-8_10

    Google Scholar 

  37. Ouzounis, G., Soille, P.: The alpa-tree algorithm. Technical Report 25500, EN, Joint Research Centre, European Commission, September (2012)

  38. Palomar, D.P., Verdu, S.: Lautum information. IEEE Trans. Inf. Theory 54(3), 964–975 (2008)

    Article  MathSciNet  Google Scholar 

  39. Panin, G., Knoll, A.: Mutual information-based 3D object tracking. Int. J. Comput. Vis. 78, 107–118 (2008). doi:10.1007/s11263-007-0083-7

    Article  Google Scholar 

  40. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Article  Google Scholar 

  41. Plaza, A., Benediktsson, J.A., Boardman, J., Brazile, J., Bruzzone, L., Camps-Vails, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Tilton, J.C., Trianni, G.: Advanced processing of hyperspectral images. In: Geoscience and Remote Sensing Symposium. IEEE International Conference on IGARSS 2006, pp. 1974–1978 (2006). doi:10.1109/IGARSS.2006.511

    Google Scholar 

  42. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)

    MATH  MathSciNet  Google Scholar 

  43. Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008). doi:10.1007/s10851-008-0090-5

    Article  MathSciNet  Google Scholar 

  44. Ronse, C.: Idempotent block splitting on partial partitions. Part II: Non-isotone operators. Orders 28(2), 307–339 (2011). doi:10.1007/s11083-010-9190-0

    Article  MATH  MathSciNet  Google Scholar 

  45. Ronse, C., Serra, J.: Fondements algébriques de la morphologie. In: Najman, L., Talbot, H. (eds.) Morphologie Mathématique 1: Approches Déterministes, pp. 49–96. Lavoisier, Paris (2008)

    Google Scholar 

  46. Sachs, L.: Applied Statistics: A Handbook of Techniques. Springer, New York (1984)

    Book  MATH  Google Scholar 

  47. Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances, pp. 37–58. Academic Press, Reading (1988)

    Google Scholar 

  48. Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24, 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  49. Sibson SLINK, R.: An optimally efficient algorithm for the single-link cluster method. Comput. J. 16, 30–34 (1973)

    Article  MathSciNet  Google Scholar 

  50. Soille, P.: On genuine connectivity relations based on logical predicates. In: Proc. of 14th Int. Conf. on Image Analysis and Processing, pp. 487–492. IEEE Computer Society Press, Modena (2007)

    Google Scholar 

  51. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  52. Soille, P.: Preventing chaining through transitions while favouring it within homogeneous regions. In: Proc. of ISMM 2011. Lecture Notes in Computer Science, vol. 6671 (2011)

    Google Scholar 

  53. Soille, P., Grazzini, J.: Constrained connectivity and transition regions. In: Proc. of 9th Int. Symp. on Mathematical Morphology. Lecture Notes in Computer Science, vol. 5720, pp. 59–69 (2009). doi:10.1007/978-3-642-03613-2_6

    Google Scholar 

  54. Sun, Z., Hoogs, A.: Image comparison by compound disjoint information with applications to perceptual visual quality assessment, image registration and tracking. Int. J. Comput. Vis. 88, 461–488 (2010). doi:10.1007/s11263-010-0316-z

    Article  MathSciNet  Google Scholar 

  55. Theiler, J., Perkins, S.: Proposed framework for anomalous change detection. In: ICML Workshop on Machine Learning Algorithms for Surveillance and Event Detection, pp. 7–14 (2006)

    Google Scholar 

  56. Velasco-Forero, S., Angulo, J.: Mathematical morphology for vector images using statistical depth. In: Proc. of 10th Int. Symp. on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 355–366. Springer, Berlin (2011). doi:10.1007/978-3-642-21569-8_31

    Google Scholar 

  57. Viola, P., Wells, W.: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24, 137–154 (1997). doi:10.1023/A:1007958904918

    Article  Google Scholar 

  58. Winter, A., Maître, H., Cambou, N., Legrand, E.: Entropy and multiscale analysis: a new feature extraction algorithm for aerial images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-97, vol. 4, pp. 2765–2768 (1997)

    Google Scholar 

  59. Zanoguera, F., Meyer, F.: On the implementation of non-separable vector levelings. In: Proceedings of VIth Int. Symp. on Mathematical Morphology, Sydney, Australia, pp. 369–377 (2002). Commonwealth Scientific and Industrial Research Organisation

    Google Scholar 

  60. Zhang, H., Fritts, J., Goldman, S.: An entropy-based objective evaluation method for image segmentation. In: Proc. SPIE (International Society for Optics and Photonics), vol. 5307, pp. 38–49 (2003). doi:10.1117/12.527167

    Google Scholar 

  61. Zuo, Y.: Projection-based depth function and associated medians. Ann. Stat. 31(5), 1460–1490 (2003)

    Article  MATH  Google Scholar 

  62. Zuo, Y.: Multidimensional trimming based on projection depth. Ann. Stat. 34(5), 2211–2251 (2006)

    Article  MATH  Google Scholar 

  63. Zuo, Y., Serfling, R.: General notions of statistical depth function. Ann. Stat. 28(2), 461–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Gueguen.

Additional information

This research was funded by the JRC Specific Programme of European Commission’s Seventh Framework Programme for Research and Technological Development (FP7). It was undertaken under the work programme of the Geo-Spatial Information Analysis for Security and Stability action, Global Security and Crisis Management unit, Institute for the Protection and Security of the Citizen. This study was performed whilst L. Gueguen was with the Joint Research Centre of the European Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueguen, L., Velasco-Forero, S. & Soille, P. Local Mutual Information for Dissimilarity-Based Image Segmentation. J Math Imaging Vis 48, 625–644 (2014). https://doi.org/10.1007/s10851-013-0432-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0432-9

Keywords

Navigation