Skip to main content
Log in

Information-Seeking Control Under Visibility-Based Uncertainty

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We address the problem of exploring an unknown environment using a range sensor. In the presence of opaque objects of arbitrary shape and topology, exploration is driven by minimization of residual uncertainty, that is primarily due to lack of visibility. The resulting optimal control is approximated with a computationally efficient heuristic, that is proven to complete exploration of a compact environment in a finite number of steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Algorithm 1
Algorithm 2
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Algorithm 3
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Agarwal, P.K., Sharir, M.: Ray shooting amidst convex polyhedra and polyhedral terrains in three dimensions. SIAM J. Comput. 25, 100–116 (1993)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Ray shooting amidst convex polygons in 2d. J. Algorithms 21, 508–519 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. 123 (1993)

  4. Ayvaci, A., Soatto, S.: Detachable object detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1942–1951 (2012)

    Article  Google Scholar 

  5. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow. Int. J. Comput. Vis. 97(3), 322–338 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheng, L.t., Tsai, Y.-H.R.: Visibility optimizations using variational approaches. Commun. Math. Sci. 3 (2005)

  7. Cheng, L.-T., Tsai, Y.-H.: Redistancing by flow of time dependent eikonal equation. J. Comput. Phys. 227, 4002–4017 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chin, W., Ntafos, S.: Optimum watchman routes. In: Proceedings of the Second Annual Symposium on Computational Geometry, pp. 24–33. ACM, New York (1986)

    Chapter  Google Scholar 

  9. Choset, H., Burdick, J.: Sensor-based exploration: the hierarchical generalized Voronoi graph. Int. J. Robot. Res. 19(2), 96–125 (2000)

    Article  Google Scholar 

  10. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: 32nd Annual Symposium on Foundations of Computer Science, 1991. Proceedings, pp. 298–303. IEEE, New York (1991)

    Google Scholar 

  11. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 21(6), 1077–1091 (2005)

    Article  Google Scholar 

  12. Ganguli, A., Cortes, J., Bullo, F.: Maximizing visibility in nonconvex polygons: nonsmooth analysis and gradient algorithm design. SIAM J. Control Optim. 45(5), 1657–1679 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gorosbin, R., Huynh, Q., Zhou, H.M.: Approximate solutions to several visibility optimization problems. CAM Report 10-07, (2010)

  14. Guibas, L., Overmars, M., Sharir, M.: Intersecting line segments, ray shooting, and other applications of geometric partitioning techniques. In: No. 318 on SWAT 88: 1st Scandinavian Workshop on Algorithm Theory, pp. 64–73. Springer, London (1988)

    Chapter  Google Scholar 

  15. Helmsen, J.J., Puckett, E.G., Colella, P., Dorr, M.: Two new methods for simulating photolithography development in 3d. SPIE J. 2726, 253 (1996)

    Google Scholar 

  16. Hernandez, J., Karianakis, N., Soatto, S.: Information driven exploration using Poisson sampling over using marginals. In preparation (2013)

  17. Kao, Y.-H.R., Tsai, C.-Y.: Properties of a level set algorithm for the visibility problems. J. Sci. Comput. 35, 170–191 (2008). doi:10.1007/s10915-008-9197-5

    Article  MATH  MathSciNet  Google Scholar 

  18. Karasev, V., Chiuso, A., Soatto, S.: Controlled recognition bounds for visual learning and exploration. In: Proc. of NIPS (2012)

    Google Scholar 

  19. Krause, A., Guestrin, C.: Optimal nonmyopic value of information in graphical models: efficient algorithms and theoretical limits (2005)

  20. Landa, Y., Tsai, R.: Visibility of point clouds and exploratory path planning in unknown environments. CAM Report 08-28 (2008)

  21. Latombe, J.-C.: Robot Motion Planning. Kluwer, Norwell (1991)

    Book  Google Scholar 

  22. Lee, T., Soatto, S.: Learning and matching multiscale template descriptors for real-time detection, localization and tracking. In: Proc. IEEE Conf. on Comp. Vision and Pattern Recogn, pp. 1457–1464 (2011)

    Google Scholar 

  23. Mohaban, S., Sharir, M.: Ray shooting amidst spheres in three dimensions and related problems. SIAM J. Comput. 26, 26–654 (1997)

    Article  MathSciNet  Google Scholar 

  24. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Petitjean, S., Lin, M., Manocha, D.: A computational geometric approach to visual hulls. Int. J. Comput. Geom. 8(4) (1997)

  26. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schaufler, G., Dorsey, J., Decoret, X., Sillion, F.X.: Conservative volumetric visibility with occluder fusion. In: Proceedings of SIGGRAPH 2000, pp. 229–238 (2000)

    Google Scholar 

  28. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proc. Nat. Acad. Sci, pp. 1591–1595 (1995)

    Google Scholar 

  29. Sethian, J.A.: Fast-marching level-set methods for three-dimensional photolithography development. SPIE J. 2726, 262 (1996)

    Google Scholar 

  30. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Natl. Acad. Sci. USA 98(20), 11069–11074 (2001) (Electronic)

    Article  MATH  MathSciNet  Google Scholar 

  31. Soatto, S.: Steps toward a theory of visual information. Technical Report UCLA-CSD100028 (2010). arXiv:1110.2053

  32. Sundaramoorthi, G., Petersen, P., Varadarajan, V.S., Soatto, S.: On the set of images modulo viewpoint and contrast changes. In: Proc. IEEE Conf. on Comp. Vision and Pattern Recogn (2009)

    Google Scholar 

  33. Taylor, C.J., Kriegman, D.J.: Vision-based motion planning and exploration algorithms for mobile robots. IEEE Trans. Robot. Autom. 14(3), 417–426 (1998)

    Article  Google Scholar 

  34. Tovar, B., Murrieta-cid, R., Lavalle, S.M.: Distance-optimal navigation in an unknown environment without sensing distances. IEEE Trans. Robot. 23 (2007)

  35. Tsai, Y.h.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Burchard, P., Sapiro, G.: Visibility and its dynamics in a pde based implicit framework. J. Comput. Phys. 199, 260–290 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tsai, R., Landa, Y., Cheng, L.-T.: Visibility of point clouds and mapping of unknown environments. In: Springer Lecture Notes and Computational Science and Engineering, pp. 1014–1025. Springer, Berlin (2006)

    Google Scholar 

  38. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam (2000)

    Chapter  Google Scholar 

  40. Valente, L.: Exploratory path planning. MS dissertation, UCLA (2010)

Download references

Acknowledgements

We acknowledge discussions with Yanina Landa, Ryo Takei. We thank Stanley Osher, Lieven Vandenberghe for feedback and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Soatto.

Additional information

Research supported by DARPA under the MSEE Program FA8650-11-1-7156 and ARO MURI W911NF-11-1-0391.

Appendix: Proofs

Appendix: Proofs

Proof

Fix some x,yD. If y=x then ϕ(y,x)=ψ(x). Assume xy. The visibility ϕ(y,x) is given by:

$$ \phi(y,x) = \min_{t \in [0,1]} \psi(x+t(y-x)) $$
(7.1)

For t∈[0,1] define f(t)=ψ(x+t(yx)). Since A is invertible, ψ is strictly convex on D and f is strictly convex on [0,1]. Therefore f reaches its minimum in t 0∈(0,1) if and only if we have f′(t 0)=0 (first order optimality condition). Suppose this is the case, then since f′(t)=2〈xx 0+tA(yx),A(yx)〉, t 0 is necessarily given by

$$ t_0 = \frac{\langle A(x^0 - x), A(y - x) \rangle }{\| A(y-x)\|^2} $$
(7.2)
  • If \(y \notin K_{x}^{1} \cup K_{x}^{2}\), then 〈A(x 0x),A(yx)〉>0 and 〈A(x 0x),A(yx)〉<〈A(yx),A(yx)〉 so t 0∈(0,1) is a minimum of f. We then have \(\phi(y,x) = \psi ( x+\frac{ \langle A(x^{0} - x),A(y - x) \rangle}{\| A(y-x)\|^{2}} (y - x) ) \). If the condition \(y \notin K_{x}^{1} \cup K_{x}^{2}\) is not satisfied, then ϕ(y,x)=min{ψ(x),ψ(y)}.

  • if \(x \in K_{x}^{1}\) then ϕ(y,x)=min{f(0),f(1)}=f(0)=ψ(x).

  • if \(y \in K_{x}^{2}\) then ϕ(y,x)=min{f(0),f(1)}=f(1)=ψ(y).

 □

Proof

It is clear that if \(y \in \mathring{K_{x}^{i}}\) for any i=1,2,3, then when x moves within some small ball y still belongs to \(\mathring{K_{x}^{i}}\). As a result, using that

$$ \phi(y,x) = \left \{ \begin{array}{l@{\quad}l} \psi(x) &\mbox{ if } y \in \mathring{K_x^1} \\ \psi(y) &\mbox{ if } y \in \mathring{K_x^2} \end{array} \right. $$
(7.3)

we obtain immediately that

$$ \nabla_x \phi(y,x) = \left \{ \begin{array}{l@{\quad}l} 2A^T A(x - x^0) &\mbox{ if } y \in \mathring{K_x^1} \\ 0 &\mbox{ if } y \in \mathring{K_x^2} \end{array} \right. $$
(7.4)

For the rest of the proof assume that \(y \in \mathring{K_{x}^{3}}\), so that

$$\phi(y,x) = \psi(x+t_0 (y-x))\quad t_0 = \frac{\langle A( x - x^0) ,A( x - y) \rangle}{\| A(x-y) \|^2}$$

The gradient of xt 0(x,y) is

(7.5)
(7.6)

Now, define f(x,y)=x+t 0(yx). The derivative of f in x in the h direction is:

$$ d f_x (h) = h + \nabla_x t_0 ^T h (y-x) + t_0 (-h) $$
(7.7)

which can be written as:

$$ df_x = 1-t_0 + (y-x) \nabla_x t_0 ^T $$
(7.8)

Using next the fact that ϕ(y,x)=ψ(f(x,y)), we obtain that:

(7.9)
(7.10)
(7.11)
(7.12)

So

(7.13)

that we rewrite

(7.14)

 □

Proof

Consider two paths \(\gamma_{1}, \gamma_{2} \in \mathcal{P}\). For any t∈[0,T], we have:

(7.15)
(7.16)
(7.17)
(7.18)

So by maximizing both sides over t:

(7.19)
(7.20)

Similary,

$$ \phi(y,\gamma_1) \leq \phi(y,\gamma_2) +K \| \gamma_2 - \gamma_1 \|_{\infty} $$
(7.21)

So |ϕ(y,γ 2)−ϕ(y,γ 1)|≤Kγ 2γ 1 for any γ 1,γ 2D. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valente, L., Tsai, YH.R. & Soatto, S. Information-Seeking Control Under Visibility-Based Uncertainty. J Math Imaging Vis 48, 339–358 (2014). https://doi.org/10.1007/s10851-013-0423-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0423-x

Keywords

Navigation