Journal of Mathematical Imaging and Vision

, Volume 46, Issue 1, pp 143–159

Modelling Convex Shape Priors and Matching Based on the Gromov-Wasserstein Distance


DOI: 10.1007/s10851-012-0375-6

Cite this article as:
Schmitzer, B. & Schnörr, C. J Math Imaging Vis (2013) 46: 143. doi:10.1007/s10851-012-0375-6


We present a novel convex shape prior functional with potential for application in variational image segmentation. Starting point is the Gromov-Wasserstein Distance which is successfully applied in shape recognition and classification tasks but involves solving a non-convex optimization problem and which is non-convex as a function of the involved shape representations. In two steps we derive a convex approximation which takes the form of a modified transport problem and inherits the ability to incorporate vast classes of geometric invariances beyond rigid isometries. We propose ways to counterbalance the loss of descriptiveness induced by the required approximations and to process additional (non-geometric) feature information. We demonstrate combination with a linear appearance term and show that the resulting functional can be minimized by standard linear programming methods and yields a bijective registration between a given template shape and the segmented foreground image region. Key aspects of the approach are illustrated by numerical experiments.


Shape prior Wasserstein distance Convex relaxation Image segmentation 

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Heidelberg UniversityHeidelbergGermany

Personalised recommendations