Skip to main content
Log in

Multiscale Texture Extraction with Hierarchical (BV,G p ,L 2) Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we first present a hierarchical (BV,G p ,L 2) variational decomposition model and then use it to achieve multiscale texture extraction which offers a hierarchical, separated representation of image texture in different scales. The starting point is the use of the variational (BV,G p ,L 2) decomposition; a given image fL 2(Ω) is decomposed into a sum of u 0+v 0+r 0, where (u 0,v 0)∈(BV(Ω),G p (Ω)) is the minimizer of an energy functional E(f,λ 0;u,v) and r 0 is the residual (i.e. r 0=fu 0v 0). In this decomposition, v 0 represents the fixed scale texture of f, which is measured by the parameter λ 0. To achieve a multiscale representation, we proceed to capture essential textures of f which have been absorbed by the residuals. Such a goal can be achieved by iterating a refinement decomposition to the residual of the previous step, i.e. r i =u i+1+v i+1+r i+1, where (u i+1,v i+1) is the minimizer of E(r i ,λ 0/2i+1;u,v). In this manner, we can obtain a hierarchical representation of f. In addition, we discuss some theoretical properties of the hierarchical (BV,G p ,L 2) decomposition and give its numerical implementation. Finally, we apply this hierarchical decomposition to the multiscale texture extraction. The performance of this method is demonstrated with both synthetic and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbadeni, N.: Texture representation and retrieval using the causal autoregressive model. J. Vis. Commun. Image Represent. 21(7), 651–664 (2010)

    Article  Google Scholar 

  2. Arunachalam, N., Ramamoorthy, B.: Fourier transform based texture measures for grinding wheel condition monitoring using machine vision. Int. J. Manuf. Technol. Manag. 21, 112–121 (2010)

    Google Scholar 

  3. Ashish, B.K., Kumar, A., Padhy, P.K.: Satellite image processing using discrete cosine transform and singular value decomposition. Adv. Digit. Image Process. Inf. Sci. 205(1), 277–290 (2011)

    Article  Google Scholar 

  4. Aubert, G., Aujol, J.: Modeling very oscillating signals. Application to image processing. Appl. Math. Optim. 51, 163–182 (2003)

    Article  MathSciNet  Google Scholar 

  5. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New York (2001)

    Google Scholar 

  6. Aujol, J., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition application to SAR images. Scale Space Methods Comput. Vis. 2695, 297–312 (2003)

    Article  Google Scholar 

  7. Aujol, J., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)

    Article  Google Scholar 

  8. Athavale, P., Tadmor, E.: Integro-differential equations based on (BV,L 1) image decomposition. SIAM J. Imaging Sci. 4(1), 300–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 55–73 (1990)

    Article  Google Scholar 

  10. Buades, A., Le, T., Morel, J., Vese, L.: Fast cartoon + texture image filters. IEEE Trans. Image Process. 19, 1978–1986 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cesmeli, E., Wang, D.L.: Texture segmentation using Gaussian Markov random fields and neural oscillator networks. IEEE Trans. Neural Netw. 12(2), 394–404 (2001)

    Article  Google Scholar 

  12. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  13. Chan, T., Shen, J., Vese, L.: Variational PDE models in image processing. Not. Am. Math. Soc. 50, 14–26 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Chan, T., Esedoglua, S., Park, F.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image Represent. 18, 464–486 (2007)

    Article  Google Scholar 

  15. Chan, T., Esedoglua, S., Park, F.: Fourth order dual method for staircase reduction in texture extraction and image restoration problems. In: 17th IEEE International Conference on Image Processing (ICIP), 2010, vol. 26–29, pp. 4137–4140 (2010)

    Chapter  Google Scholar 

  16. Chen, C.C., Daponte, J.S., Fox, M.D.: Fractal feature analysis and classification in medical imaging. IEEE Trans. Med. Imaging 8(2), 133–142 (1989)

    Article  Google Scholar 

  17. Coburn, C.A., Roberts, A.C.B.: A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens. 25(20), 4287–4308 (2004)

    Article  Google Scholar 

  18. Daugman, J.: Complete discrete 2D Gabor transform by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 36, 1169–1179 (1988)

    Article  MATH  Google Scholar 

  19. Fauzi, M.F.A., Lewis, P.H.: A multiscale approach to texture-based image retrieval. PAA Pattern Anal. Appl. 11, 141–157 (2008)

    Article  MathSciNet  Google Scholar 

  20. Gimelfarb, G.: Image Textures and Gibbs Random Fields. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  21. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  22. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  23. Hay, G.J., Niemann, K.O.: Visualizing 3-D texture: A three-dimensional structural approach to model forest texture. Can. J. Remote Sens. 20, 90–101 (1994)

    Google Scholar 

  24. Hormigo, J., Cristobal, G.: High resolution spectral analysis of images using the pseudo-Wigner distribution. IEEE Trans. Signal Process. 46(6), 1757–1763 (1998)

    Article  Google Scholar 

  25. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  26. Julesz, B., Bergen, J.R.: Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst. Tech. J. 62(6), 1619–1645 (1983)

    Google Scholar 

  27. Le, T., Vese, L.: Image decomposition using total variation and div(BMO). Multiscale Model. Simul. 4, 390–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liang, K.H., Tjahjadi, T.: Adaptive scale fixing for multiscale texture segmentation. IEEE Trans. Image Process. 15(1), 249–256 (2006)

    Article  Google Scholar 

  29. Liu, X., Wang, D.: Texture classification using spectral histograms. IEEE Trans. Image Process. 12(6), 661–670 (2003)

    Article  Google Scholar 

  30. Mallat, S.: Wavelets for a vision. Proc. IEEE 84(4), 604–614 (1996)

    Article  Google Scholar 

  31. Mao, J.C., Jain, A.K.: Texture classification and segmentation using multi-resolution simultaneous autoregressive models. Pattern Recognit. 25(2), 173–188 (1992)

    Article  Google Scholar 

  32. Materka, A., Strzelecki, M.: Texture analysis methods—a review. COST B11 report, Technical University of Lodz (1998)

  33. Meyer, Y.: Wavelets: Algorithms and Applications. SIAM, Philadelphia (1993)

    MATH  Google Scholar 

  34. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. In: Univ. Lecture Ser., vol. 22. AMS, Providence (2001)

    Google Scholar 

  35. Michael, D.: Wavelet features for color image classification. In: Annual Conference Imaging and Geospatial Information Society, Orlando (2000)

    Google Scholar 

  36. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program., Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nunes, J.C., Guyot, S., Delechelle, E.: Texture analysis based on local analysis of the bidimensional empirical mode decomposition. Mach. Vis. Appl. 16, 177–188 (2005)

    Article  Google Scholar 

  38. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pentland, A.P.: Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (1984)

    Article  Google Scholar 

  40. Pichler, O., Teuner, A., Hosticka, B.J.: A comparison of texture feature extraction using adaptive Gabor filtering pyramidal and tree structured wavelet transforms. Pattern Recognit. 29(5), 733–742 (1996)

    Article  Google Scholar 

  41. Pu, Y.F., Zhou, J.L.: A novel approach for multi-scale texture segmentation based on fractional differential. Int. J. Comput. Math. 88(1), 58–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reed, T.R., Wechesler, H.: Segmentation of textured images and Gestalt organization using spatial/spatial-frequency representations. IEEE Trans. Pattern Anal. Mach. Intell. 12, 1–12 (1990)

    Article  Google Scholar 

  43. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  44. Sarkar, N., Chaudhuri, B.B.: An efficient approach to estimate fractal dimension of textural images. Pattern Recognit. 25(9), 1035–1041 (1992)

    Article  Google Scholar 

  45. Shen, J.: Inpainting and the fundamental problem of image processing. SIAM News 36 (2003)

  46. Starck, J., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14, 1570–1582 (2005)

    Article  MathSciNet  Google Scholar 

  47. Tadmor, E., Athavale, P.: Multiscale image representation using integro-differential equations. Inverse Probl. Imaging 3(4), 693–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV;L 2) decompositions. Multiscale Model. Simul. 2(4), 554–579 (2003)

    Article  MathSciNet  Google Scholar 

  49. Tadmor, E., Nezzar, S., Vese, L.: Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Commun. Math. Sci. 6(2), 281–307 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Tuceryan, M., Jain, A.K.: Texture analysis. In: Handbook of Pattern Recognition and Computer Vision, pp. 235–276 (1993)

    Chapter  Google Scholar 

  51. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vese, L., Osher, S.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20, 7–18 (2004)

    Article  MathSciNet  Google Scholar 

  53. Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjiang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., He, C. Multiscale Texture Extraction with Hierarchical (BV,G p ,L 2) Decomposition. J Math Imaging Vis 45, 148–163 (2013). https://doi.org/10.1007/s10851-012-0351-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0351-1

Keywords

Navigation