Skip to main content

Advertisement

Log in

Automatic Radial Distortion Estimation from a Single Image

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Many computer vision algorithms rely on the assumptions of the pinhole camera model, but lens distortion with off-the-shelf cameras is usually significant enough to violate this assumption. Many methods for radial distortion estimation have been proposed, but they all have limitations. Robust automatic radial distortion estimation from a single natural image would be extremely useful for many applications, particularly those in human-made environments containing abundant lines. For example, it could be used in place of an extensive calibration procedure to get a mobile robot or quadrotor experiment up and running quickly in an indoor environment. We propose a new method for automatic radial distortion estimation based on the plumb-line approach. The method works from a single image and does not require a special calibration pattern. It is based on Fitzgibbon’s division model, robust estimation of circular arcs, and robust estimation of distortion parameters. We perform an extensive empirical study of the method on synthetic images. We include a comparative statistical analysis of how different circle fitting methods contribute to accurate distortion parameter estimation. We finally provide qualitative results on a wide variety of challenging real images. The experiments demonstrate the method’s ability to accurately identify distortion parameters and remove distortion from images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. See http://www.cs.ait.ac.th/vgl/faisal/downloads.html.

References

  1. Al-Sharadqah, A., Chernov, N.: Error analysis for circle fitting algorithms. The Electron. J. Stat. 3, 886–911 (2009)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, L., Gomez, L., Sendra, J.R.: An algebraic approach to lens distortion by line rectification. J. Math. Imaging Vis. 35(1), 36–50 (2009)

    Article  MathSciNet  Google Scholar 

  3. Alvarez, L., Gomez, L., Sendra, J.R.: Algebraic lens distortion model estimation (2010). http://www.ipol.im/pub/algo/ags_algebraic_lens_distortion_estimation/

  4. Barreto, J.P., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: International Conference on Computer Vision (ICCV), pp. 625–632 (2005)

    Google Scholar 

  5. Bockaert, V.: Pincushion distortion. http://www.dpreview.com/learn/?/Glossary/Optical/Pincushion_Distortion_01.htm

  6. Bradski, G.: The OpenCV library. Dr. Dobb’s J. 25(11), 120–125 (2000)

    Google Scholar 

  7. Braüer-Burchardt, C.: A simple new method for precise lens distortion correction of low cost camera systems. In: German Pattern Recognition Symposium, pp. 570–577 (2004)

    Google Scholar 

  8. Brauer-Burchardt, C., Voss, K.: A new algorithm to correct fish-eye- and strong wide-angle-lens-distortion from single images. In: IEEE International Conference on Image Processing, vol. 1, pp. 225–228 (2001)

    Google Scholar 

  9. Brown, D.C.: Close-range camera calibration. Photogramm. Eng. 37(8), 855–866 (1971)

    Google Scholar 

  10. Bucket, P.: Nikon 16 mm fisheye photos. http://photobucket.com/images/Nikon+16mm+fisheye/

  11. Bukhari, F., Dailey, M.N.: Robust radial distortion from a single image. In: Proceedings of the 6th International Conference on Advances in Visual Computing. ISVC’10, vol. II, pp. 11–20 (2010)

    Google Scholar 

  12. Wood, C.: How to fake the fisheye effect. http://chanelwood.com/how-to/photoshop/how-to-fake-the-fisheye-effect/

  13. Chen, P.Y., Huang, C.C., Shiau, Y.H., Chen, Y.T.: A VLSI implementation of barrel distortion correction for wide-angle camera images. IEEE Trans. Circuits Syst. II, Express Briefs 56, 51–55 (2009)

    Article  Google Scholar 

  14. Chernov, N.: Matlab code for circle fitting algorithms (1997). http://www.math.uab.edu/~chernov/cl/MATLABcircle.html

  15. Chernov, N.: Circular and Linear Regression: Fitting Circles and Lines by Least Squares. Chapman & Hall, London (2010)

    Book  Google Scholar 

  16. Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math. Imaging Vis. 23, 239–252 (2005)

    Article  MathSciNet  Google Scholar 

  17. Devernay, F., Faugeras, O.: Straight lines have to be straight: Automatic calibration and removal of distortion from scenes of structured environments. Mach. Vis. Appl. 13(1), 14–24 (2001)

    Article  Google Scholar 

  18. Dyer, D.: Wide angle adapters for digital cameras. http://www.andromeda.com/people/ddyer/photo/wideangle.html

  19. El-Melegy, M.T., Farag, A.A.: Nonmetric lens distortion calibration: Closed-form solutions, robust estimation and model selection. In: IEEE International Conference on Computer Vision, vol. 1. (2003)

    Google Scholar 

  20. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). http://doi.acm.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  21. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 125–132 (2001)

    Google Scholar 

  22. Friel, M., Hughes, C., Denny, P., Jones, E., Glavin, M.: Automatic calibration of fish-eye cameras from automotive video sequences. IET Intell. Transp. Syst. 4(2), 136–148 (2010)

    Article  Google Scholar 

  23. Gonzalez-Aguilera, D., Gomez-Lahoz, J., Rodriguez-Gonzalvez, P.: An automatic approach for radial lens distortion correction from a single image. IEEE Sens. J. 11(4), 956–965 (2011)

    Article  Google Scholar 

  24. Hartley, R., Kang, S.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1309–1321 (2007)

    Article  Google Scholar 

  25. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  26. Hughes, C., Glavin, M., Jones, E., Denny, P.: Wide-angle camera technology for automotive applications: A review. IET Intell. Transp. Syst. 3(1), 19–31 (2009)

    Article  Google Scholar 

  27. Kbh3rd: Camelback locomotive (2008). http://en.wikipedia.org/wiki/File:B

  28. Kukelova, Z., Pajdla, T.: A minimal solution to radial distortion autocalibration. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2410–2422 (2011)

    Article  Google Scholar 

  29. Kukush, A., Markovsky, I., Van Huffel, S.: Consistent estimation in an implicit quadratic measurement error model. Comput. Stat. Data Anal. 47(1), 123–147 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laksi, L.: Motorcycle taxi. http://leolaksi.wordpress.com/2009/12/28/more-photos-with-the-nikkor-16mm-f2-8-fisheye-lens/

  31. MATLAB: Edge—find edges in grayscale image (2009). http://www.mathworks.com/help/toolbox/images/ref/edge.html

  32. Moré, J.J.: The Levenberg-Marquardt algorithm: Implementation and theory. In: Lecture Notes in Mathematics, pp. 105–116 (1978)

    Google Scholar 

  33. Ociepka, R.: Raynox DCR-720 with barrel distortion (2003). http://www.pbase.com/ociepka/image/32663644

  34. Oleson, R.: Full-circle examples. http://rick_oleson.tripod.com/index-105.html

  35. Pratt, V.: Direct least-squares fitting of algebraic surfaces. SIGGRAPH Comput. Graph. 21, 145–152 (1987)

    Article  MathSciNet  Google Scholar 

  36. Ramalingam, S., Sturm, P., Lodha, S.K.: Generic self-calibration of central cameras. Comput. Vis. Image Underst. 114(2), 210–219 (2010)

    Article  Google Scholar 

  37. Rideout, S.: 10 ninjas Steve’s photostream (2002). http://www.flickr.com/photos/steverideout/50185284/

  38. Rosten, E., Loveland, R.: Camera distortion self-calibration using the plumb-line constraint and minimal hough entropy. Mach. Vis. Appl. 22, 77–85 (2011)

    Article  Google Scholar 

  39. Sarge: Misc. http://sarge.wheresthebeef.co.uk/Misc/350D_misc_100/IMG_2797.jpg

  40. Skewes, K.: Real estate photo tip: Wide angle lens correction. http://blogonlineed.com/2011/01/14/real-estate-photo-tip-wide-angle-lens-correction/

  41. Solheim, E.: How to remove distortion on a fisheye image. http://eirikso.com/2008/12/14/how-to-remove-distortion-on-a-fisheye-image/

  42. Stein, G.P.: Lens distortion calibration using point correspondences. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 602–608 (1996)

    Google Scholar 

  43. Strand, R., Hayman, E.: Correcting radial distortion by circle fitting. In: British Machine Vision Conference (BMVC) (2005)

    Google Scholar 

  44. Swaminathan, R., Nayar, S.: Non-metric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1172–1178 (2000)

    Article  Google Scholar 

  45. Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1115–1138 (1991)

    Article  Google Scholar 

  46. Tavakoli, H.R., Pourreza, H.R.: Automated center of radial distortion estimation, using active targets. In: Asian Conference on Computer Vision (ACCV) (2010)

    Google Scholar 

  47. Thormählen, T., Broszio, H., Wassermann, I.: Robust line-based calibration of lens distortion from a single view. In: Computer Vision/Computer Graphics Collaboration for Model-based Imaging Rendering, Image Analysis and Graphical Special Effects, pp. 105–112 (2003)

    Google Scholar 

  48. Tomasi, C.: Sample image for CPS 296.1 homework assignment (2007). http://www.cs.duke.edu/courses/spring06/cps296.1/homework/1/lab.gif

  49. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. In: Radiometry, pp. 221–244 (1992)

    Google Scholar 

  50. Wang, A., Qiu, T., Shao, L.: A simple method of radial distortion correction with centre of distortion estimation. J. Math. Imaging Vis. 35(3), 165–172 (2009)

    Article  MathSciNet  Google Scholar 

  51. Wang, J., Shi, F., Zhang, J., Liu, Y.: A new calibration model of camera lens distortion. Pattern Recognit. 41, 607–615 (2008)

    Article  MATH  Google Scholar 

  52. Whittaker, G.: Wide angles. https://picasaweb.google.com/gmw3027/WideAngles#5276761797451570738

  53. Yusuf: Correcting barrel distortion of wide and ultrawide lenses. http://www.photos-of-the-year.com/articles/barrel-distortion/

  54. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Faisal Bukhari was supported by graduate fellowships from the Higher Education Commission of Pakistan and the Asian Institute of Technology (AIT), Thailand. We are grateful to Irshad Ali and Waheed Iqbal for comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Bukhari.

Additional information

The authors are with the Computer Science and Information Management program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhari, F., Dailey, M.N. Automatic Radial Distortion Estimation from a Single Image. J Math Imaging Vis 45, 31–45 (2013). https://doi.org/10.1007/s10851-012-0342-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0342-2

Keywords

Navigation