Skip to main content
Log in

Zoom Dependent Lens Distortion Mathematical Models

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose new mathematical models to study the variation of lens distortion models when modifying zoom setting in the case of zoom lenses. The new models are based on a polynomial approximation to account for the variation of the radial distortion parameters through the range of zoom lens settings and, on the minimization of a global error energy measuring the distance between sequences of distorted aligned points and straight lines after lens distortion correction. To validate the performance of the method we present experimental results on calibration pattern images and on sport event scenarios using broadcast video cameras. We obtain, experimentally, that using just a second order polynomial approximation of lens distortion parameter zoom variation, the quality of lens distortion correction is as good as the one obtained individually frame by frame using independent lens distortion model for each frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001)

    Article  Google Scholar 

  2. Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  4. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  5. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)

    Article  Google Scholar 

  6. Light, D.L.: The new camera calibration system at the US geological survey. Photogramm. Eng. Remote Sens. 58(2), 185–188 (1992)

    MathSciNet  Google Scholar 

  7. Alvarez, L., Gomez, L., Sendra, R.: An algebraic approach to lens distortion by line rectification. J. Math. Imaging Vis. 35(1), 36–50 (2009)

    Article  MathSciNet  Google Scholar 

  8. Fraser, C.S., Shortis, M.R.: Variation of distortion within the photographic field. Photogramm. Eng. Remote Sens. 58(6), 851–855 (1992)

    Google Scholar 

  9. Fraser, C., Al-Ajlouni, S.: Zoom-dependent camera calibration in digital close-range photogrammetry. Photogramm. Eng. Remote Sens. 72(9), 1017–1026 (2006)

    Google Scholar 

  10. Bräuer-Burchardt, C., Heinze, M., Munkelt, C., Kühmstedt, P., Notni, G.: Distance dependent lens distortion variation in 3D measuring systems using fringe projection. In: BMVC 2006, pp. 327–336 (2006)

    Google Scholar 

  11. Irani, M., Anandan, P.: A unified approach to moving object detection in 2D and 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 577–589 (1998)

    Article  Google Scholar 

  12. Hampapur, A., Brown, L., Connell, J., et al.: Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Process. Mag. 22(2), 38–51 (2005)

    Article  Google Scholar 

  13. Martinez, E., Torras, C.: Contour-based 3D motion recovery while zooming. Robot. Auton. Syst. 44(3–4), 219–227 (2003)

    Article  Google Scholar 

  14. Fahn, C., Lo, C.: A high-definition human face tracking system using the fusion of omni-directional and PTZ cameras mounted on a mobile robot. In: 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), Taichung, China, pp. 6–11 (2010)

    Chapter  Google Scholar 

  15. Fayman, J., Sudarsky, O., Rivlin, E.: Zoom tracking. In: Proceedings of the International Conference on Robotics and Automation, Leuven, Belgium, pp. 2783–2788 (1998)

    Google Scholar 

  16. Peddigari, V., Kehtarnavaz, N.: A relational approach to zoom tracking for digital still cameras. IEEE Trans. Consum. Electron. 51(4), 1051–1059 (2005)

    Article  Google Scholar 

  17. Ergum, B.: Photogrammetric observing the variation of intrinsic parameters for zoom lenses. Sci. Res. Essays 5(5), 461–467 (2010)

    Google Scholar 

  18. Wilson, R., Shafer, S.: A perspective projection camera model for zoom lenses. In: Proc. Second Conference on Optical 3-D Measurements Techniques, Switzerland, October (1993)

    Google Scholar 

  19. Tarabanis, K., Tsai, R., Goodman, D.: Modeling of a computer-controlled zoom lens. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1545–1551 (1992)

    Chapter  Google Scholar 

  20. Li, M., Lavest, J.: Some aspects of zoom lens camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 18(11), 1105–1110 (1996)

    Article  Google Scholar 

  21. Atienza, R., Zelinsky, A.: A practical zoom camera calibration technique: an application on active vision for human-robot interaction. In: Proceedings of Australian Conference on Robotics and Automation, Sydney, Australia, pp. 85–90 (2001)

    Google Scholar 

  22. Benhimane, S., Malis, E.: Self-calibration of the distortion of a zooming camera by matching points at different resolutions. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 2307–2312 (2004)

    Google Scholar 

  23. Kim, D., Shin, H., Oh, J., Sohn, K.: Automatic radial distortion correction in zoom lens video camera. J. Electron. Imaging 19(4), 43010–43017 (2010)

    Article  Google Scholar 

  24. Alvarez, L., Esclarín, J., Trujillo, A.: A model based edge location with subpixel precision. In: Proceedings IWCVIA 03: International WorkShop on Computer Vision and Image Analysis, Las Palmas de Gran Canaria, Spain, pp. 29–32 (2003)

    Google Scholar 

  25. Alemán-Flores, M., Alvarez, L., Henríquez, P., Mazorra, L.: Morphological thick line center detection. In: Proceedings ICIAR’2010. LNCS, vol. 6111, pp. 71–80. Springer, Berlin (2010)

    Google Scholar 

  26. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research has partially been supported by the MICINN project reference MTM2010-17615 (Ministerio de Ciencia e Innovación. Spain). We acknowledge MEDIAPRODUCCION S.L. company who has kindly provided to us with the real soccer video sequence we use in the numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, L., Gómez, L. & Henríquez, P. Zoom Dependent Lens Distortion Mathematical Models. J Math Imaging Vis 44, 480–490 (2012). https://doi.org/10.1007/s10851-012-0339-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0339-x

Keywords

Navigation