Skip to main content

New Variational Formulations for Level Set Evolution Without Reinitialization with Applications to Image Segmentation

Abstract

Interface evolution problems are often solved elegantly by the level set method, which generally requires the time-consuming reinitialization process. In order to avoid reinitialization, we reformulate the variational model as a constrained optimization problem. Then we present an augmented Lagrangian method and a projection Lagrangian method to solve the constrained model and propose two gradient-type algorithms. For the augmented Lagrangian method, we employ the Uzawa scheme to update the Lagrange multiplier. For the projection Lagrangian method, we use the variable splitting technique and get an explicit expression for the Lagrange multiplier. We apply the two approaches to the Chan-Vese model and obtain two efficient alternating iterative algorithms based on the semi-implicit additive operator splitting scheme. Numerical results on various synthetic and real images are provided to compare our methods with two others, which demonstrate effectiveness and efficiency of our algorithms.

This is a preview of subscription content, access via your institution.

References

  1. Osher, S., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  2. Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  3. Osher, S., Santosa, F.: Level set methods for optimization problems involving geometry and constraints I. frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  4. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. J. Comput. Phys. 114, 146–159 (1994)

    MATH  Article  Google Scholar 

  5. Santosa, F.: A level-set approach for inverse problems involving obstacles. ESAIM Control Optim. Calc. Var. 1, 17–33 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  6. Chan, T.F., Tai, X.-C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2003)

    MathSciNet  Article  Google Scholar 

  7. Fedkiw, R.P., Sapiro, G., Shu, C.-W.: Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher’s contributions. J. Comput. Phys. 185, 309–341 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  8. Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  10. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  11. Tai, X.-C., Chan, T.F.: A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Mod. 1, 25–48 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Gomes, J., Faugeras, O.: Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11, 209–223 (2000)

    Article  Google Scholar 

  13. Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 15, 1171–1181 (2006)

    Article  Google Scholar 

  14. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without reinitialization: a new variational formulation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 430–436 (2005)

    Chapter  Google Scholar 

  15. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    MATH  Article  Google Scholar 

  16. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  17. Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  18. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  19. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  20. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  21. Lie, J., Lysaker, M., Tai, X.-C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75, 1155–1174 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  22. Zhu, S., Wu, Q., Liu, C.: Variational piecewise constant level set methods for shape optimization of a two-density drum. J. Comput. Phys. 229, 5062–5089 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  23. Zhu, S., Liu, C., Wu, Q.: Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum. Comput. Methods Appl. Mech. Eng. 199, 2970–2986 (2010)

    MathSciNet  Article  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    MATH  Book  Google Scholar 

  25. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  26. Huang, Y., Ng, M., Wen, Y.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  27. Bioucas-Dias, J.M., Figueiredo, M.A.T.: Multiplicative noise removal using variable aplitting and constrained optimization. IEEE Trans. Image Process. 19, 1720–1730 (2010)

    MathSciNet  Article  Google Scholar 

  28. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11, 130–141 (2000)

    Article  Google Scholar 

  29. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    MATH  Article  Google Scholar 

  30. Sussman, M., Fatemi, E.: An efficient, interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 1165–1191 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  31. Zhao, H.K., Chan, T.F., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  32. Tai, X.-C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. UCLA CAM Report 09-05 (2009)

  33. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  34. Lu, T., Neittaanmäki, P., Tai, X.-C.: A parallel splitting up method and its application to Navier-Stokes equations. Appl. Math. Lett. 4, 25–29 (1991)

    MATH  Article  Google Scholar 

  35. Weickert, J., Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

  36. Wang, X., Huang, D., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recognit. 43, 603–618 (2010)

    MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiao Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, C., Dong, F., Zhu, S. et al. New Variational Formulations for Level Set Evolution Without Reinitialization with Applications to Image Segmentation. J Math Imaging Vis 41, 194–209 (2011). https://doi.org/10.1007/s10851-011-0269-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0269-z

Keywords

  • Level set method
  • Reinitialization
  • Augmented Lagrangian method
  • Projection Lagrangian method
  • Chan-Vese model
  • Additive operator splitting