Osher, S., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
MathSciNet
MATH
Article
Google Scholar
Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)
MathSciNet
MATH
Article
Google Scholar
Osher, S., Santosa, F.: Level set methods for optimization problems involving geometry and constraints I. frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001)
MathSciNet
MATH
Article
Google Scholar
Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. J. Comput. Phys. 114, 146–159 (1994)
MATH
Article
Google Scholar
Santosa, F.: A level-set approach for inverse problems involving obstacles. ESAIM Control Optim. Calc. Var. 1, 17–33 (1996)
MathSciNet
MATH
Article
Google Scholar
Chan, T.F., Tai, X.-C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2003)
MathSciNet
Article
Google Scholar
Fedkiw, R.P., Sapiro, G., Shu, C.-W.: Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher’s contributions. J. Comput. Phys. 185, 309–341 (2003)
MathSciNet
MATH
Article
Google Scholar
Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003)
MATH
Google Scholar
Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
MATH
Google Scholar
Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)
MATH
Google Scholar
Tai, X.-C., Chan, T.F.: A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Mod. 1, 25–48 (2004)
MathSciNet
MATH
Google Scholar
Gomes, J., Faugeras, O.: Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11, 209–223 (2000)
Article
Google Scholar
Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 15, 1171–1181 (2006)
Article
Google Scholar
Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without reinitialization: a new variational formulation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 430–436 (2005)
Chapter
Google Scholar
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)
MATH
Article
Google Scholar
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)
MathSciNet
MATH
Article
Google Scholar
Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)
MathSciNet
MATH
Article
Google Scholar
Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2003)
MathSciNet
MATH
Article
Google Scholar
Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)
MathSciNet
MATH
Article
Google Scholar
Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)
MathSciNet
MATH
Article
Google Scholar
Lie, J., Lysaker, M., Tai, X.-C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75, 1155–1174 (2006)
MathSciNet
MATH
Article
Google Scholar
Zhu, S., Wu, Q., Liu, C.: Variational piecewise constant level set methods for shape optimization of a two-density drum. J. Comput. Phys. 229, 5062–5089 (2010)
MathSciNet
MATH
Article
Google Scholar
Zhu, S., Liu, C., Wu, Q.: Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum. Comput. Methods Appl. Mech. Eng. 199, 2970–2986 (2010)
MathSciNet
Article
Google Scholar
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
MATH
Book
Google Scholar
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)
MathSciNet
MATH
Article
Google Scholar
Huang, Y., Ng, M., Wen, Y.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009)
MathSciNet
MATH
Article
Google Scholar
Bioucas-Dias, J.M., Figueiredo, M.A.T.: Multiplicative noise removal using variable aplitting and constrained optimization. IEEE Trans. Image Process. 19, 1720–1730 (2010)
MathSciNet
Article
Google Scholar
Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11, 130–141 (2000)
Article
Google Scholar
Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)
MATH
Article
Google Scholar
Sussman, M., Fatemi, E.: An efficient, interface preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 1165–1191 (1999)
MathSciNet
MATH
Article
Google Scholar
Zhao, H.K., Chan, T.F., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)
MathSciNet
MATH
Article
Google Scholar
Tai, X.-C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. UCLA CAM Report 09-05 (2009)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
MathSciNet
MATH
Article
Google Scholar
Lu, T., Neittaanmäki, P., Tai, X.-C.: A parallel splitting up method and its application to Navier-Stokes equations. Appl. Math. Lett. 4, 25–29 (1991)
MATH
Article
Google Scholar
Weickert, J., Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)
Article
Google Scholar
Wang, X., Huang, D., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recognit. 43, 603–618 (2010)
MATH
Article
Google Scholar