Journal of Mathematical Imaging and Vision

, Volume 41, Issue 1–2, pp 109–121 | Cite as

Fattening Free Block Matching

  • G. Blanchet
  • A. BuadesEmail author
  • B. Coll
  • J. M. Morel
  • B. Rouge


Block matching along epipolar lines is the core of most stereovision algorithms in geographic information systems. The usual distances between blocks are the sum of squared distances in the block (SSD) or the correlation. Minimizing these distances causes the fattening effect, by which the center of the block inherits the disparity of the more contrasted pixels in the block. This fattening error occurs everywhere in the image, and not just on strong depth discontinuities. The fattening effect at strong depth edges is a particular case of fattening, called foreground fattening effect. A theorem proved in the present paper shows that a simple and universal adaptive weighting of the SSD resolves the fattening problem at all smooth disparity points (a Spanish patent has been applied for by Universitat de Illes Balears (Reference P25155ES00, UIB, 2009)). The optimal SSD weights are nothing but the inverses of the squares of the image gradients in the epipolar direction. With these adaptive weights, it is shown that the optimal disparity function is the result of the convolution of the real disparity with a prefixed kernel. Experiments on simulated and real pairs prove that the method does what the theorem predicts, eliminating surface bumps caused by fattening. However, the method does not resolve the foreground fattening.


Stereoscopy Disparity map Block matching Subpixel accuracy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buades, A., Coll, B., Morel, J.M., Rouge, B.: Procedimiento de establecimiento de correspondencia entre una primera imagen digital y una segunda imagen digital de una misma escena para la obtencion de disparidades. Spanish Patent, Reference P25155ES00, UIB (2009) Google Scholar
  2. 2.
    Cao, F.: A Theory of Shape Identification. Springer, Berlin (2008) zbMATHCrossRefGoogle Scholar
  3. 3.
    Cao, F., Delon, J., Desolneux, A., Muse, P., Sur, F.: A unified framework for detecting groups and application to shape recognition. J. Math. Imaging Vis. 27(2), 91–119 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Delon, J., Rougé, B.: Small baseline stereovision. J. Math. Imaging Vis. 28(3), 209–223 (2007) CrossRefGoogle Scholar
  5. 5.
    Fusiello, A., Roberto, V., Trucco, E.: Symmetric stereo with multiple windowing. Int. J. Pattern Recognit. Artif. Intell. 14(8), 1053–1066 (2000) CrossRefGoogle Scholar
  6. 6.
    Hirschmuller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1-3), 229–246 (2002) CrossRefGoogle Scholar
  7. 7.
    Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994) CrossRefGoogle Scholar
  8. 8.
    Kimmel, R., Zhang, C., Bronstein, A.M., Bronstein, M.M.: Are mser features really interesting? IEEE Pami. In press (2010) Google Scholar
  9. 9.
    Lotti, J., Giraudon, G.: Correlation algorithm with adaptive window for aerial image in stereo vision. In: Image and Signal Processing for Remote Sensing, vol. 2315, pp. 76–87 (1994) Google Scholar
  10. 10.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004) CrossRefGoogle Scholar
  11. 11.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004) CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1), 43–72 (2005) CrossRefGoogle Scholar
  13. 13.
    Morel, J.M., Yu, G.: ASIFT: A new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Musé, P., Sur, F., Cao, F., Gousseau, Y., Morel, J.-M.: An a contrario decision method for shape element recognition. Int. J. Comput. Vis. 69(3), 295–315 (2006) CrossRefGoogle Scholar
  15. 15.
    Patricio, M.P., Cabestaing, F., Colot, O., Bonnet, P.: A similarity-based adaptive neighborhood method for correlation-based stereo matching. In: International Conference on Image Processing, vol. 2, pp. 1341–1344 (2004) Google Scholar
  16. 16.
    Robert, L., Faugeras, O.D.: Curve-based stereo: figural continuity and curvature. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1991) Google Scholar
  17. 17.
    Sabater, N.: Reliability and accuracy in stereovision. Application to aerial and satellite high resolution images. Ph.D. thesis, ENS Cachan, December (2009) Google Scholar
  18. 18.
    Sabater, N., Blanchet, G., Moisan, L., Almansa, A., Morel, J.-M.: Review of low-baseline stereo algorithms and benchmarks. In: Image and Signal Processing for Remote Sensing XVI, vol. 7830 (2010) Google Scholar
  19. 19.
    Scharstein, D., Szeliski, R.: Middlebury stereo vision page. Online at (2002)
  20. 20.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), 7–42 (2002) zbMATHCrossRefGoogle Scholar
  21. 21.
    Schmid, C., Zisserman, A.: The geometry and matching of lines and curves over multiple views. Int. J. Comput. Vis. 40(3), 199–234 (2000) zbMATHCrossRefGoogle Scholar
  22. 22.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision, vol. 846 (1998). CiteSeer Google Scholar
  23. 23.
    Veksler, O.: Fast variable window for stereo correspondence using integral images. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1, 556–561 (2003) Google Scholar
  24. 24.
    Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 798–805 (2006) CrossRefGoogle Scholar
  25. 25.
    Yaroslavsky, L., Eden, M.: Fundamentals of digital optics (2003) Google Scholar
  26. 26.
    Yoon, K.-J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 650–656 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Blanchet
    • 1
  • A. Buades
    • 2
    • 3
    Email author
  • B. Coll
    • 2
  • J. M. Morel
    • 4
  • B. Rouge
    • 5
  1. 1.CNES, Centre National d’Etudes SpatialesToulouseFrance
  2. 2.Dpt. Matematiques InformaticaUniversitat Illes BalearsPalma de MallorcaSpain
  3. 3.MAP5CNRS—Université Paris DescartesParis Cedex 06France
  4. 4.CMLAENS CachanCachanFrance
  5. 5.CESBIOToulouseFrance

Personalised recommendations