Journal of Mathematical Imaging and Vision

, Volume 41, Issue 1–2, pp 39–58 | Cite as

Sparsity Driven People Localization with a Heterogeneous Network of Cameras

  • Alexandre AlahiEmail author
  • Laurent Jacques
  • Yannick Boursier
  • Pierre Vandergheynst


This paper addresses the problem of localizing people in low and high density crowds with a network of heterogeneous cameras. The problem is recast as a linear inverse problem. It relies on deducing the discretized occupancy vector of people on the ground, from the noisy binary silhouettes observed as foreground pixels in each camera. This inverse problem is regularized by imposing a sparse occupancy vector, i.e., made of few non-zero elements, while a particular dictionary of silhouettes linearly maps these non-empty grid locations to the multiple silhouettes viewed by the cameras network. The proposed framework is (i) generic to any scene of people, i.e., people are located in low and high density crowds, (ii) scalable to any number of cameras and already working with a single camera, (iii) unconstrained by the scene surface to be monitored, and (iv) versatile with respect to the camera’s geometry, e.g., planar or omnidirectional.

Qualitative and quantitative results are presented on the APIDIS and the PETS 2009 Benchmark datasets. The proposed algorithm successfully detects people occluding each other given severely degraded extracted features, while outperforming state-of-the-art people localization techniques.


People detection Localization Sparse approximation Convex optimization Omnidirectional cameras Dictionary Multi-view 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alahi, A., Boursier, Y., Jacques, L., Vandergheynst, P.: A sparsity constrained inverse problem to locate people in a network of cameras. In: 16th International Conference on Digital Signal Processing, Santorini, Greece, pp. 189–195 (2009) Google Scholar
  2. 2.
    Alahi, A., Boursier, Y., Jacques, L., Vandergheynst, P.: Sport players detection and tracking with a mixed network of planar and omnidirectional cameras. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, Challenge Prize Winner, Como, pp. 1–8 (2009) CrossRefGoogle Scholar
  3. 3.
    Alahi, A., Jacques, L., Boursier, Y., Vandergheynst, P.: Sparsity-driven people localization algorithm: evaluation in crowded scenes environments. In: Proc. IEEE Int’l Workshop on Performance Evaluation of Tracking and Surveillance, Snowbird, Utah, pp. 1–8 (2009) CrossRefGoogle Scholar
  4. 4.
    Alahi, A., Bierlaire, M., Kunt, M.: Cascade of descriptors to detect and track objects across any network of cameras. Comput. Vis. Image Underst. 114(6), 624–640 (2010) CrossRefGoogle Scholar
  5. 5.
    Baraniuk, R., Cevher, V., Duarte, M., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berclaz, J., Fleuret, F., Fua, P.: Robust people tracking with global trajectory optimization. In: Conference on Computer Vision and Pattern Recognition, pp. 744–750 (2006) Google Scholar
  7. 7.
    Black, J., Ellis, T., Rosin, P.: Multi view image surveillance and tracking. In: Proc. IEEE Workshop on Motion and Video Computing, pp. 169–174 (2002) CrossRefGoogle Scholar
  8. 8.
    Candès, E.J., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Caspi, Y., Simakov, D., Irani, M.: Feature-based sequence-to-sequence matching. Int. J. Comput. Vis. 68(1), 53–64 (2006) CrossRefGoogle Scholar
  10. 10.
    Cevher, V., Duarte, M., Baraniuk, R.: Distributed target localization via spatial sparsity. In: Proc. European Signal Processing Conference (2008) Google Scholar
  11. 11.
    Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proceedings of Int. Conf. on Acoustics, Speech, Signal Processing (ICASSP), pp. 3869–3872 (2008) Google Scholar
  12. 12.
    Chen, S.S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cheng, H., Zheng, N., Qin, J.: Pedestrian detection using sparse Gabor filter and support vector machine. In: Proc. IEEE Symposium on Intelligent Vehicles, pp. 583–587 (2005) CrossRefGoogle Scholar
  14. 14.
    Combettes, P.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5), 475–504 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2006) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005) Google Scholar
  17. 17.
    Delannay, D., Danhier, N., De Vleeschouwer, C.: Detection and recognition of sports(wo)man from multiple views. In: Proc. ACM/IEEE Int’l Conference on Distributed Smart Cameras, Como, Italy, pp. 1–7 (2009) CrossRefGoogle Scholar
  18. 18.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989) CrossRefGoogle Scholar
  20. 20.
    Eshel, R., Moses, Y.: Homography based multiple camera detection and tracking of people in a dense crowd. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Google Scholar
  21. 21.
    Fadili, M.J., Starck, J.L.: Monotone operator splitting for fast sparse solutions of inverse problems. SIAM J. Imaging Sci., 2005–2006 (2009) Google Scholar
  22. 22.
    Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2008) CrossRefGoogle Scholar
  23. 23.
    Franco, J., Boyer, E.: Fusion of multiview silhouette cues using a space occupancy grid. In: Tenth Proc. IEEE Int’l Conference on Computer Vision, ICCV 2005, vol. 2 (2005) Google Scholar
  24. 24.
    Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997) CrossRefGoogle Scholar
  25. 25.
    Khan, S., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Proc. European Conference on Computer Vision, vol. 4, pp. 133–146 (2006) Google Scholar
  26. 26.
    Khan, S.M., Shah, M.: Tracking multiple occluding people by localizing on multiple scene planes. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 505–519 (2009) CrossRefGoogle Scholar
  27. 27.
    Kim, K., Davis, L.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Proc. European Conference on Computer Vision, vol. 3, pp. 98–109 (2006) Google Scholar
  28. 28.
    Kowalski, M., Torresani, B.: Sparsity and persistence: mixed norms provide simple signals models with dependent coefficients. Signal Image Video Process. 3(3), 251–264 (2008) CrossRefGoogle Scholar
  29. 29.
    Malioutov, D., Cetin, M., Willsky, A.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8 Part 2), 3010–3022 (2005) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Moreau, J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Ser. A, Math. 255, 2897–2899 (1962) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Mueller, K., Smolic, A., Droese, M., Voigt, P., Wienand, T.: Multi-texture modeling of 3d traffic scenes. In: Proc. of the 2003 Int’l Conference on Multimedia, vol. 2, pp. 657–660 (2003) Google Scholar
  32. 32.
    Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 97, pp. 193–199 (1997) Google Scholar
  34. 34.
    Orwell, J., Massey, S., Remagnino, P., Greenhill, D., Jones, G.A.: A multi-agent framework for visual surveillance. In: Proc. IEEE Int’l Conference on Image Analysis and Processing, pp. 1104–1107. IEEE Computer Society, Washington (1999) Google Scholar
  35. 35.
    Papageorgiou, C., Poggio, T.: Trainable pedestrian detection. In: Proc. IEEE Int’l Conference on Image Processing, vol. 4, pp. 35–39 (1999) Google Scholar
  36. 36.
    Porikli, F.: Achieving real-time object detection and tracking under extreme conditions. J. Real-Time Image Process. 1(1), 33–40 (2006) CrossRefGoogle Scholar
  37. 37.
    Reddy, D., Sankaranarayanan, A., Cevher, V., Chellappa, R.: Compressed sensing for multi-view tracking and 3-D voxel reconstruction. In: Proc. IEEE Int’l Conference on Image Processing, pp. 221–224 (2008) Google Scholar
  38. 38.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999) Google Scholar
  39. 39.
    Stauffer, C., Tieu, K.: Automated multi-camera planar tracking correspondence modeling. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 259–266 (2003) Google Scholar
  40. 40.
    Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared images and histograms of oriented gradients. In: Proc. IEEE Symposium on Intelligent Vehicles, Tokyo, Japan, pp. 206–212 (2006) CrossRefGoogle Scholar
  41. 41.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, Methodol., 267–288 (1996) Google Scholar
  42. 42.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1713–1727 (2008) CrossRefGoogle Scholar
  43. 43.
    Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005) CrossRefGoogle Scholar
  44. 44.
    Yang, D., Gonzalez-Banos, H., Guibas, L.: Counting people in crowds with a real-time network of simple image sensors. In: Proc. IEEE Int’l Conference on Computer Vision, vol. 1, pp. 122–129 (2003) CrossRefGoogle Scholar
  45. 45.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), 13 (2006) CrossRefGoogle Scholar
  46. 46.
    Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: 2003 Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 459–466 (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexandre Alahi
    • 1
    Email author
  • Laurent Jacques
    • 2
  • Yannick Boursier
    • 3
  • Pierre Vandergheynst
    • 1
  1. 1.Signal Processing LabEPFLLausanneSwitzerland
  2. 2.Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)University of LouvainLouvain-la-NeuveBelgium
  3. 3.Centre de Physiques des Particules de MarseilleAix-Marseille Université, CNRS/IN2P3MarseillesFrance

Personalised recommendations