Skip to main content
Log in

Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper describes a generalized axiomatic scale-space theory that makes it possible to derive the notions of linear scale-space, affine Gaussian scale-space and linear spatio-temporal scale-space using a similar set of assumptions (scale-space axioms).

The notion of non-enhancement of local extrema is generalized from previous application over discrete and rotationally symmetric kernels to continuous and more general non-isotropic kernels over both spatial and spatio-temporal image domains. It is shown how a complete classification can be given of the linear (Gaussian) scale-space concepts that satisfy these conditions on isotropic spatial, non-isotropic spatial and spatio-temporal domains, which results in a general taxonomy of Gaussian scale-spaces for continuous image data. The resulting theory allows filter shapes to be tuned from specific context information and provides a theoretical foundation for the recently exploited mechanisms of shape adaptation and velocity adaptation, with highly useful applications in computer vision.

It is also shown how time-causal spatio-temporal scale-spaces can be derived from similar assumptions. The mathematical structure of these scale-spaces is analyzed in detail concerning transformation properties over space and time, the temporal cascade structure they satisfy over time as well as properties of the resulting multi-scale spatio-temporal derivative operators. It is also shown how temporal derivatives with respect to transformed time can be defined, leading to the formulation of a novel analogue of scale normalized derivatives for time-causal scale-spaces.

The kernels generated from these two types of theories have interesting relations to biological vision. We show how filter kernels generated from the Gaussian spatio-temporal scale-space as well as the time-causal spatio-temporal scale-space relate to spatio-temporal receptive field profiles registered from mammalian vision. Specifically, we show that there are close analogies to space-time separable cells in the LGN as well as to both space-time separable and non-separable cells in the striate cortex. We do also present a set of plausible models for complex cells using extended quasi-quadrature measures expressed in terms of scale normalized spatio-temporal derivatives.

The theories presented as well as their relations to biological vision show that it is possible to describe a general set of Gaussian and/or time-causal scale-spaces using a unified framework, which generalizes and complements previously presented scale-space formulations in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Sharif, S., Khalil, R.: On the generator of two parameter semigroups. Appl. Math. Comput. 156(2), 403–414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almansa, A., Lindeberg, T.: Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale-selection. IEEE Trans. Image Process. 9(12), 2027–2042 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 8(1), 26–33 (1986)

    Article  MATH  Google Scholar 

  5. Ballester, C., Gonzalez, M.: Affine invariant texture segmentation and shape from texture by variational methods. J. Math. Imaging Vis. 9, 141–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baumberg, A.: Reliable feature matching across widely separated views. In: Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, pp. I:1774–1781. Hilton Head, SC (2000)

    Google Scholar 

  7. Broadbridge, P.: Entropy diagnostics for fourth order partial differential equations in conservation form. Entropy 10, 365–379 (2008). doi:10.3390/e10030365

    Article  MathSciNet  MATH  Google Scholar 

  8. Burt, P.J.: Fast filter transforms for image processing. Comput. Vis. Graph. Image Process. 16, 20–51 (1981)

    Article  Google Scholar 

  9. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)

    Google Scholar 

  10. Crowley, J.L.: A representation for visual information. PhD thesis, Carnegie-Mellon University, Robotics Institute, Pittsburgh, Pennsylvania (1981)

  11. DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive field dynamics in the central visual pathways. Trends Neurosci. 18(10), 451–457 (1995)

    Article  Google Scholar 

  12. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 22, 267–298 (2004)

    Article  Google Scholar 

  13. Duits, R., Felsberg, M., Florack, L., Platel, B.: α-scale-spaces on a bounded domain. In: Griffin, L., Lillholm, M. (eds.) Proc. Scale-Space Methods in Computer Vision: Scale-Space’03, Isle of Skye, Scotland, Jun. 2003. Lecture Notes in Computer Science, vol. 2695, pp. 494–510. Springer, Berlin (2003)

    Chapter  Google Scholar 

  14. Dunninger, D.R.: Maximum principles for solutions of some fourth-order elliptic equation. J. Math. Anal. Appl. 37, 665–668 (1972)

    Article  MathSciNet  Google Scholar 

  15. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  16. Fagerström, D.: Temporal scale-spaces. Int. J. Comput. Vis. 2–3, 97–106 (2005)

    Article  Google Scholar 

  17. Fagerström, D.: Spatio-temporal scale-spaces. In: Gallari, F., Murli, A., Paragios, N. (eds.) Proc. 1st International Conference on Scale-Space Theories and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 326–337. Springer, Berlin (2007)

    Chapter  Google Scholar 

  18. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  19. Fleet, D.J., Langley, K.: Recursive filters for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 61–67 (1995)

    Article  Google Scholar 

  20. Florack, L.M.J.: Image Structure. Series in Mathematical Imaging and Vision. Springer, Dordrecht (1997)

    Google Scholar 

  21. Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image Vis. Comput. 10(6), 376–388 (1992)

    Article  Google Scholar 

  22. Florack, L.M.J., Niessen, W., Nielsen, M.: The intrinsic structure of optic flow incorporating measurement duality. Int. J. Comput. Vis. 27(3), 263–286 (1998)

    Article  Google Scholar 

  23. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  24. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  25. Gårding, J., Lindeberg, T.: Direct computation of shape cues using scale-adapted spatial derivative operators. Int. J. Comput. Vis. 17(2), 163–191 (1996)

    Article  Google Scholar 

  26. Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford Mathematical Monographs. Oxford Science, Oxford (1985)

    MATH  Google Scholar 

  27. Griffin, L.: Critical point events in affine scale space. In: Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.) Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory, Copenhagen, Denmark, May 1996, pp. 165–180. Springer, Berlin (1996)

    Google Scholar 

  28. Guichard, F.: A morphological, affine, and Galilean invariant scale-space for movies. IEEE Trans. Image Process. 7(3), 444–456 (1998)

    Article  Google Scholar 

  29. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications, vol. 31 (1957)

  30. Hummel, R.A., Moniot, R.: Reconstructions from zero-crossings in scale-space. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2111–2130 (1989)

    Article  Google Scholar 

  31. Iijima, T.: Observation theory of two-dimensional visual patterns. Technical report, Papers of Technical Group on Automata and Automatic Control, IECE, Japan (1962)

  32. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koenderink, J.J.: Scale-time. Biol. Cybern. 58, 159–162 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Koenderink, J.J., van Doorn, A.J.: Receptive field families. Biol. Cybern. 63, 291–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. 14(6), 597–605 (1992)

    Article  Google Scholar 

  36. Laptev, I., Lindeberg, T.: Velocity-adapted spatio-temporal receptive fields for direct recognition of activities. Image Vis. Comput. 22(2), 105–116 (2004)

    Article  Google Scholar 

  37. Laptev, I., Caputo, B., Schuldt, C., Lindeberg, T.: Local velocity-adapted motion events for spatio-temporal recognition. Comput. Vis. Image Underst. 108, 207–229 (2007)

    Article  Google Scholar 

  38. Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12(3), 234–254 (1990)

    Article  Google Scholar 

  39. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Springer, Dordrecht (1994)

    Google Scholar 

  40. Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 225–270 (1994). Also available from http://www.csc.kth.se/~tony/abstracts/Lin94-SI-abstract.html

    Article  Google Scholar 

  41. Lindeberg, T.: On the axiomatic foundations of linear scale-space. In: Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.) Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory, Copenhagen, Denmark, May, 1996. Springer, Berlin (1996)

    Google Scholar 

  42. Lindeberg, T.: On automatic selection of temporal scales in time-casual scale-space. In: Sommer, G., Koenderink, J.J. (eds.) Proc. AFPAC’97: Algebraic Frames for the Perception-Action Cycle, Kiel, Germany, Sep., 1997. Lecture Notes in Computer Science, vol. 1315, pp. 94–113. Springer, Berlin (1997)

    Chapter  Google Scholar 

  43. Lindeberg, T.: Linear spatio-temporal scale-space. In: ter Haar Romeny, B.M., Florack, L.M.J., Koenderink, J.J., Viergever, M.A. (eds.) Scale-Space Theory in Computer Vision: Proc. First Int. Conf. Scale-Space’97, Utrecht, The Netherlands, July, 1997. Lecture Notes in Computer Science, vol. 1252, pp. 113–127. Springer, Berlin (1997). Extended version available as technical report ISRN KTH NA/P–01/22–SE from KTH

    Google Scholar 

  44. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 77–116 (1998)

    Google Scholar 

  45. Lindeberg, T.: Linear spatio-temporal scale-space. Report, ISRN KTH/NA/P–01/22–SE, Dept. of Numerical Analysis and Computing Science, KTH, Nov. (2001)

  46. Lindeberg, T.: Time-recursive velocity-adapted spatio-temporal scale-space filters. In: Johansen, P. (ed.) Proc. 7th European Conference on Computer Vision, Copenhagen, Denmark, May 2002. Lecture Notes in Computer Science, vol. 2350, pp. 52–67. Springer, Berlin (2002)

    Google Scholar 

  47. Lindeberg, T.: Scale-space. In: Wah, B. (ed.) Encyclopedia of Computer Science and Engineering, pp. 2495–2504. Wiley, Hoboken (2008). doi:10.1002/9780470050118.ecse609. Also available from http://www.nada.kth.se/~tony/abstracts/Lin08-EncCompSci.html

    Google Scholar 

  48. Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. Technical report TRITA-CSC-CV 2010:3, ISSN 1653-7092, School of Computer Science and Communication, KTH (Royal Institute of Technology), Stockholm, Sweden, 2010. Also available from http://www.csc.kth.se/~tony/abstracts/Lin10-GenGaussScSp.html

  49. Lindeberg, T., Fagerström, D.: Scale-space with causal time direction. In: Proc. 4th European Conf. on Computer Vision, Cambridge, UK, Apr, 1996, vol. 1064, pp. 229–240. Springer, Berlin (1996)

    Google Scholar 

  50. Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure. In: Eklundh, J.-O. (ed.) Proc. 3rd European Conf. on Computer Vision, Stockholm, Sweden, May 1994. Lecture Notes in Computer Science, vol. 800, pp. 389–400. Springer, Berlin (1994)

    Google Scholar 

  51. Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure. Image Vis. Comput. 15, 415–434 (1997)

    Article  Google Scholar 

  52. Lindeberg, T., Akbarzadeh, A., Laptev, I.: Galilean-corrected spatio-temporal interest operators. In: International Conference on Pattern Recognition, Cambridge, pp. I:57–62. (2004). Extended version available as technical report ISRN KTH NA/P–04/05–S from KTH

    Google Scholar 

  53. Lindeberg, T., Akbarzadeh, A., Laptev, I.: Galilean-corrected spatio-temporal interest operators. Technical Report ISRN KTH/NA/P–04/05–SE, Dept. of Numerical Analysis and Computing Science, KTH, Mar. 2004

  54. Lukas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Image Understanding Workshop (1981)

    Google Scholar 

  55. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  56. Nagel, H., Gehrke, A.: Spatiotemporal adaptive filtering for estimation and segmentation of optical flow fields. In: Proc. 5th European Conf. on Computer Vision, Freiburg, Germany, Jun. 1998, pp. 86–102. Springer, Berlin (1998)

    Google Scholar 

  57. Pauwels, E.J., Fiddelaers, P., Moons, T., van Gool, L.J.: An extended class of scale-invariant and recursive scale-space filters. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 691–701 (1995)

    Article  Google Scholar 

  58. Pazy, A.: Semi-groups of Linear Operators and Applications to Partical Differential Equations. Applied Mathematical Sciences. Springer, Berlin (1983)

    Google Scholar 

  59. Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. Image Vis. Comput. 10, 663–672 (1992)

    Article  Google Scholar 

  60. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  61. Schaffalitzky, F., Zisserman, A.: Viewpoint invariant texture matching and wide baseline stereo. In: Proc. 8th Int. Conf. on Computer Vision, Vancouver, Canada, July 2001, pp. II:636–643. (2001)

    Google Scholar 

  62. Schoenberg, I.J.: On Pòlya frequency functions. II. Variation-diminishing integral operators of the convolution type. Acta Sci. Math. (Szeged) 12, 97–106 (1950)

    MathSciNet  Google Scholar 

  63. Schoenberg, I.J.: On smoothing operations and their generating functions. Bull. Am. Math. Soc. 59, 199–230 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  64. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multi-scale transforms. IEEE Trans. Information Theory 38(2), 587–607 (1992)

    Article  MathSciNet  Google Scholar 

  65. Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.): Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory. Series in Mathematical Imaging and Vision. Springer, Copenhagen (1996)

    Google Scholar 

  66. ter Haar Romeny, B. (ed.): Geometry-Driven Diffusion in Computer Vision. Series in Mathematical Imaging and Vision. Springer, Dordrecht (1994)

    Google Scholar 

  67. ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer, Dordrecht (2003)

    Google Scholar 

  68. ter Haar Romeny, B., Florack, L., Nielsen, M.: Scale-time kernels and models. In: Scale-Space and Morphology: Proc. Scale-Space’01, Vancouver, Canada, July 2001. Lecture Notes in Computer Science. Springer, Berlin (2001)

    Google Scholar 

  69. Tuytelaars, T., van Gool, L.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004)

    Article  Google Scholar 

  70. Valois, R.L.D., Cottaris, N.P., Mahon, L.E., Elfer, S.D., Wilson, J.A.: Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vis. Res. 40(2), 3685–3702 (2000)

    Article  Google Scholar 

  71. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  72. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. Witkin, A.P.: Scale-space filtering. In: Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany, Aug. 1983, pp. 1019–1022 (1983)

    Google Scholar 

  74. Young, R.A.: The Gaussian derivative theory of spatial vision: Analysis of cortical cell receptive field line-weighting profiles. Technical Report GMR-4920, Computer Science Department, General Motors Research Lab., Warren, Michigan (1985)

  75. Young, R.A.: The Gaussian derivative model for spatial vision: I. Retinal mechanisms. Spat. Vis. 2, 273–293 (1987)

    Article  Google Scholar 

  76. Young, R.A., Lesperance, R.M.: The Gaussian derivative model for spatio-temporal vision: II. Cortical data. Spat. Vis. 14(3, 4), 321–389 (2001)

    Article  Google Scholar 

  77. Young, R.A., Lesperance, R.M., Meyer, W.W.: The Gaussian derivative model for spatio-temporal vision: I. Cortical model. Spat. Vis. 14(3, 4), 261–319 (2001)

    Article  Google Scholar 

  78. Yuille, A.L., Poggio, T.A.: Scaling theorems for zero-crossings. IEEE Trans. Pattern Anal. Mach. Intell. 8, 15–25 (1986)

    Article  MATH  Google Scholar 

  79. Zhang, H., Zhang, W.: Maximum principles and bounds in a class of fourth-order uniformly elliptic equations. J. Phys. A: Math. Gen. 35, 9245–9250 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lindeberg.

Additional information

The support from the Swedish Research Council, Vetenskapsrådet (contract 2004-4680), the Royal Swedish Academy of Sciences as well as the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindeberg, T. Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space. J Math Imaging Vis 40, 36–81 (2011). https://doi.org/10.1007/s10851-010-0242-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0242-2

Keywords

Navigation