Journal of Mathematical Imaging and Vision

, Volume 41, Issue 1–2, pp 23–38 | Cite as

A Spatial Regularization Approach for Vector Quantization

  • Caroline Chaux
  • Anna JezierskaEmail author
  • Jean-Christophe Pesquet
  • Hugues Talbot


Quantization, defined as the act of attributing a finite number of levels to an image, is an essential task in image acquisition and coding. It is also intricately linked to image analysis tasks, such as denoising and segmentation. In this paper, we investigate vector quantization combined with regularity constraints, a little-studied area which is of interest, in particular, when quantizing in the presence of noise or other acquisition artifacts. We present an optimization approach to the problem involving a novel two-step, iterative, flexible, joint quantizing-regularization method featuring both convex and combinatorial optimization techniques. We show that when using a small number of levels, our approach can yield better quality images in terms of SNR, with lower entropy, than conventional optimal quantization methods.


Vector quantization Convex optimization Combinatorial optimization Proximal methods Graph cuts Image coding Compression Information theory Entropy Segmentation Denoising Regularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic, Dordrecht (1992) zbMATHGoogle Scholar
  2. 2.
    Max, J.: Quantizing for minimum distortion. IRE Trans. Inf. Theory 6(1), 7–12 (1960) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1), 84–95 (1980) CrossRefGoogle Scholar
  5. 5.
    Wu, X.: On convergence of Lloyd’s method I. IEEE Trans. Inf. Theory 38(1), 171–174 (1992) zbMATHCrossRefGoogle Scholar
  6. 6.
    Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Arya, V., Mittal, A., Joshi, R.C.: An efficient coding method for teleconferencing and medical image sequences. In: International Conference on Intelligent Sensing and Information Processing, pp. 8–13 (2005) CrossRefGoogle Scholar
  8. 8.
    Kawada, R., Koike, A., Nakajima, Y.: Prefilter control scheme for low bitrate tv distribution. In: IEEE International Conference on Multimedia and Expo, pp. 769–772 (2006) CrossRefGoogle Scholar
  9. 9.
    Chuang, K., Tzeng, H., Chen, S., Wu, J., Chen, T.: Fuzzy C-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006) CrossRefGoogle Scholar
  10. 10.
    Alvarez, L., Esclarín, J.: Image quantization using reaction-diffusion equations. SIAM J. Appl. Math. 57(1), 153–175 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) zbMATHGoogle Scholar
  12. 12.
    Bruce, J.D.: Optimum quantization. Technical Report 429, Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, MA (1965) Google Scholar
  13. 13.
    Wu, X., Rokne, J.: An O(KNlog N) algorithm for optimum k-level quantization on histograms of n points. In: ACM Annual Computer Science Conference, Louisville, KY, pp. 339–343 (1989) Google Scholar
  14. 14.
    Wu, X.: Optimal quantization by matrix searching. J. Algorithms 12(4), 663–673 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Oxford (2004) Google Scholar
  16. 16.
    Veksler, O.: Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University, Ithaca, NY, USA (1999) Google Scholar
  17. 17.
    Vertan, C., Popescu, V., Buzuloiu, V.: Morphological like operators for color images. In: Proc. Eur. Sig. and Image Proc. Conference, Trieste, Italy, 10–13 September (1996) Google Scholar
  18. 18.
    Talbot, H., Evans, C., Jones, R.: Complete ordering and multivariate mathematical morphology. In: ISMM ’98: Proceedings of the Fourth International Symposium on Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 27–34. Kluwer Academic, Norwell (1998) Google Scholar
  19. 19.
    Chanussot, J., Lambert, P.: Bit mixing paradigm for multivalued morphological filters. In: Sixth International Conference on Image Processing and Its Applications, vol. 2, Dublin, pp. 804–808 (1997) CrossRefGoogle Scholar
  20. 20.
    Hill, B., Roger, Th., Vorhagen, F.W.: Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula. ACM Trans. Graph. 16(2), 109–154 (1997) CrossRefGoogle Scholar
  21. 21.
    Eckart, C., Young, G.: The approximation of one by another of lower rank. Psychometrika 1(3), 211–218 (1936) CrossRefGoogle Scholar
  22. 22.
    Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2010) Google Scholar
  23. 23.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Grundlehren, vol. 305, p. 306. Springer, Berlin (1993) Google Scholar
  24. 24.
    Pesquet, J.-C.: A parallel inertial proximal optimization method. Preprint (2010).
  25. 25.
    Combettes, P.L., Pesquet, J.-C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 24(6) (2008) Google Scholar
  26. 26.
    Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21(3), 193–199 (2010) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345–2356 (2010) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Afonso, M., Bioucas-Dias, J., Figueiredo, M.: A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems. In: Proc. Int. Conf. Acoust., Speech Signal Process., Dallas, USA (2010) Google Scholar
  30. 30.
    Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93, 273–299 (1965) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23, 1495–1518 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001) CrossRefGoogle Scholar
  33. 33.
    Ishikawa, H., Geiger, D.: Mapping image restoration to a graph problem. In: IEEE-EURASIP Workshop Nonlinear Signal Image Process., Antalya, Turkey, 20–23 June 1999. pp. 189–193 (1999) Google Scholar
  34. 34.
    Ford, J.L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962) zbMATHGoogle Scholar
  35. 35.
    Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003) CrossRefGoogle Scholar
  36. 36.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004) CrossRefGoogle Scholar
  37. 37.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004) MathSciNetGoogle Scholar
  38. 38.
    Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: SSVM ’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 150–162. Springer, Berlin (2009) CrossRefGoogle Scholar
  39. 39.
    Trobin, W., Pock, T., Cremers, D., Bischof, H.: Continuous energy minimization via repeated binary fusion. In: ECCV, Part IV, Marseille, France, 12–18 October 2008, pp. 677–690 (2008) Google Scholar
  40. 40.
    Frahm, M., Zach, J.M., Niethammer, C.: Continuous maximal flows and Wulff shapes: Application to MRFs. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 1911–1918 (2009) Google Scholar
  41. 41.
    Veksler, O.: Graph cut based optimization for MRFs with truncated convex priors. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, pp. 1–8 (2007) CrossRefGoogle Scholar
  42. 42.
    Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 112(1), 14–29 (2008) CrossRefGoogle Scholar
  43. 43.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1436–1453 (2007) CrossRefGoogle Scholar
  44. 44.
    Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation, part II: levelable functions, convex priors and non-convex cases. J. Math. Imaging Vis. 26(3), 277–291 (2006) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zalesky, B.: Efficient determination of Gibbs estimators with submodular energy functions. (2003)
  46. 46.
    Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 2993–3000 (2009) CrossRefGoogle Scholar
  47. 47.
    Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84(3), 288–307 (2009) CrossRefGoogle Scholar
  48. 48.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 731–738 (2009) Google Scholar
  49. 49.
    Wu, X.: On initialization of Max’s algorithm for optimum quantization. IEEE Trans. Commun. 38(10), 1653–1656 (1990) CrossRefGoogle Scholar
  50. 50.
    Peric, Z., Nikolic, J.: An effective method for initialization of Lloyd-Max’s algorithm of optimal scalar quantization for Laplacian source. Informatica 18(2), 279–288 (2007) MathSciNetzbMATHGoogle Scholar
  51. 51.
    Katsavounidis, I., Kuo, C.-C.J., Zhang, Z.: A new initialization technique for generalized Lloyd iteration. IEEE Signal Process. Lett. 1(10), 144–146 (1994) CrossRefGoogle Scholar
  52. 52.
    Heckbert, P.: Color image quantization for frame buffer display. Comput. Graph. 16(3), 297–307 (1982) CrossRefGoogle Scholar
  53. 53.
    Wu, X.: Color quantization by dynamic programming and principal analysis. ACM Trans. Graph. 11(4), 348–372 (1992) zbMATHCrossRefGoogle Scholar
  54. 54.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 359–374 (2001) Google Scholar
  55. 55.
    Ohno, Y.: CIE fundamentals for color measurements. In: IS&T NIP16 Conference, Vancouver, Canada, 16–20 October (2000) Google Scholar
  56. 56.
    Lempitsky, V.S., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010) CrossRefGoogle Scholar
  57. 57.
    Kolmogorov, V.: A note on the primal-dual method for semi-metric labeling problem. Technical report, UCL (2007) Google Scholar
  58. 58.
    Kolmogorov, V., Shioura, A.: New algorithms for convex cost tension problem with application to computer vision. Discrete Optim. 6(4), 378–393 (2009) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Caroline Chaux
    • 1
  • Anna Jezierska
    • 1
    Email author
  • Jean-Christophe Pesquet
    • 1
  • Hugues Talbot
    • 1
  1. 1.Lab. Informatique Gaspard Monge, UMR CNRS 8049Université Paris-EstMarne-la-ValléeFrance

Personalised recommendations