Journal of Mathematical Imaging and Vision

, Volume 39, Issue 3, pp 259–268

A New Solution to the Relative Orientation Problem Using Only 3 Points and the Vertical Direction

  • Mahzad Kalantari
  • Amir Hashemi
  • Franck Jung
  • Jean-Pierre Guedon
Article

Abstract

This paper presents a new method to solve the relative pose between two images, using three pairs of homologous points and the knowledge of the vertical direction. The vertical direction can be determined in two ways: The first requires direct physical measurements such as the ones provided by an IMU (inertial measurement unit). The other uses the automatic extraction of the vanishing point corresponding to the vertical direction in an image. This knowledge of the vertical direction solves two unknowns among the three parameters of the relative rotation, so that only three homologous couples of points are requested to position a couple of images. Rewriting the coplanarity equations thus leads to a much simpler solution. The remaining unknowns resolution is performed by “hiding a variable” approach. The elements necessary to build a specific algebraic solver are given in this paper, allowing for a real-time implementation. The results on real and synthetic data show the efficiency of this method.

Keywords

Relative orientation Vertical direction Minimal solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antone, M., Teller, S.: Automatic Recovery of Relative Camera Rotations for Urban Scenes, vol. 02, pp. 282–289. IEEE Computer Society, Los Alamitos (2000) Google Scholar
  2. 2.
    Barnard, S.T.: Interpreting perspective images. Artif. Intell. 21, 435–462 (1983) CrossRefGoogle Scholar
  3. 3.
    Batra, D., Nabbe, B., Hebert, M.: An Alternative Formulation for Five Point Relative Pose Problem, pp. 21–21 (2007) Google Scholar
  4. 4.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Undergraduate Texts in Mathematics. Springer, New York (2007) MATHCrossRefGoogle Scholar
  5. 5.
    Elkadi, M., Mourrain, B.: Symbolic-numeric methods for solving polynomial equations and applications. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equations: Foundations, Algorithms, and Applications, pp. 124–168 (2005) Google Scholar
  6. 6.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  8. 8.
  9. 9.
    Kalantari, M., Jung, F., Paparoditis, N., Guédon, J.P.: Robust and automatic vanishing points detection with their uncertainties from a single uncalibrated image, by planes extraction on the unit sphere. In: IAPRS, Beijing, China, vol. 37 (Part 3A), pp. 203–208 (2008) Google Scholar
  10. 10.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems (2008) Google Scholar
  11. 11.
    Li, H.D., Hartley, R.I.: Five-Point Motion Estimation Made Easy, pp. I: 630–633 (2006) Google Scholar
  12. 12.
    Lobo, J., Dias, J.: Vision and inertial sensor cooperation using gravity as a vertical reference. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1597–1608 (2003) CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004) CrossRefGoogle Scholar
  14. 14.
    Lutton, E., Maitre, H., Lopez-Krahe, J.: Contribution to the determination of vanishing points using Hough transform. IEEE Trans. Pattern Anal. Mach. Intell. 16(4), 430–438 (1994) CrossRefGoogle Scholar
  15. 15.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004) CrossRefGoogle Scholar
  16. 16.
    Philip, J.: A non-iterative algorithm for determining all essential matrices corresponding to five point pairs. Photogramm. Rec. 15(88), 589–599 (1996) CrossRefGoogle Scholar
  17. 17.
    Schaffalitzky, F., Zisserman, A.: Planar grouping for automatic detection of vanishing lines and points. Image Vis. Comput. 18, 647–658 (2000) CrossRefGoogle Scholar
  18. 18.
    Segvic, M., Schweighofer, G., Pinz, A.: Performance evaluation of the five-point relative pose with emphasis on planar scenes. In: Performance Evaluation for Computer Vision, Workshop of the Austrian Association for Pattern Recognition, Austria, pp. 33–40 (2007) Google Scholar
  19. 19.
    Shufelt, J.A.: Performance evaluation and analysis of vanishing point detection techniques. IEEE Trans. PAMI 21(3), 282–288 (1999) Google Scholar
  20. 20.
    Stewénius, H.: Matlab code for solving the fivepoint problem. http://vis.uky.edu/~stewe/FIVEPOINT/
  21. 21.
    Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogramm. Remote Sens. 60(4), 284–294 (2006) CrossRefGoogle Scholar
  22. 22.
    Strecha, C., von Hansen, W., Van Gool, L.J., Fua, P., Thoennessen, U.: On Benchmarking Camera Calibration and Multi-view Stereo for High Resolution Imagery, pp. 1–8 (2008) Google Scholar
  23. 23.
    Triggs, B.: Routines for relative pose of two calibrated cameras from 5 points. Technical report, INRIA (2000) Google Scholar
  24. 24.
    van den Heuvel, F.A.: Vanishing point detection for architectural photogrammetry. Int. Arch. Photogramm. Remote Sens. 32(5), 652–659 (1998) Google Scholar
  25. 25.
    Vieville, T., Clergue, E., Facao, P.E.D.: Computation of ego motion using the vertical cue. Mach. Vis. Appl. 8(1), 41–52 (1995) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mahzad Kalantari
    • 1
  • Amir Hashemi
    • 2
  • Franck Jung
    • 3
  • Jean-Pierre Guedon
    • 4
  1. 1.Ecole Nationale des Sciences Géographiques, IGN France, Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), UMR CNRS 6597Polytech’NantesNantesFrance
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran
  3. 3.Commissariat général au développement durable, Direction de la recherche et de l’innovationMinistère de l’écologie, de l’énergie, du développement durable et de la mer, en charge des technologies vertes et des négociations sur le climatLa DéfenseFrance
  4. 4.Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), UMR CNRS 6597Polytech’NantesNantesFrance

Personalised recommendations