Skip to main content
Log in

Morphological Amoebas Are Self-snakes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper is concerned with amoeba median filtering, a structure-adaptive morphological image filter. It has been introduced by Lerallut et al. in a discrete formulation. Experimental evidence shows that iterated amoeba median filtering leads to segmentation-like results that are similar to those obtained by self-snakes, an image filter based on a partial differential equation. We establish this correspondence by analysing a space-continuous formulation of iterated amoeba median filtering. We prove that in the limit of vanishing radius of the structuring elements, iterated amoeba median filtering indeed approximates the partial differential equation of self-snakes. This result holds true under very general assumptions on the metric used to construct the amoebas. We present experiments with discrete iterated amoeba median filtering that confirm qualitative and quantitative predictions of our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barash, D.: Bilateral filtering and anisotropic diffusion: towards a unified viewpoint. In: Kerckhove, M. (ed.) Scale-Space and Morphology in Computer Vision. Lecture Notes in Computer Science, vol. 2106, pp. 273–280. Springer, Berlin (2001)

    Chapter  Google Scholar 

  3. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34, 344–371 (1986)

    Article  Google Scholar 

  4. Borgefors, G.: On digital distance transforms in three dimensions. Comput. Vis. Image Underst. 64(3), 368–376 (1996)

    Article  Google Scholar 

  5. Braga-Neto, U.M.: Alternating sequential filters by adaptive neighborhood structuring functions. In: Maragos, P., Schafer, R.W., Butt, M.A. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol. 5, pp. 139–146. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  6. Carmona, R., Zhong, S.: Adaptive smoothing respecting feature directions. IEEE Trans. Image Process. 7(3), 353–358 (1998)

    Article  Google Scholar 

  7. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chui, C.K., Wang, J.: PDE models associated with the bilateral filter. Adv. Comput. Math. (2008). doi:10.1007/s10444-008-9095-2

    Google Scholar 

  9. Didas, S., Weickert, J.: Combining curvature motion and edge-preserving denoising. In: Sgallari, F., Murli, F., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 568–579. Springer, Berlin (2007)

    Chapter  Google Scholar 

  10. Dougherty, E.R., Astola, J. (eds.) Nonlinear Filters for Image Processing. SPIE, Bellingham (1999)

    MATH  Google Scholar 

  11. Fabbri, R., Da F. Costa, L., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. 40(1), 2 (2008)

    Article  Google Scholar 

  12. Guichard, F., Morel, J.-M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis. IMA Conference Series (New Series), vol. 63, pp. 525–562. Clarendon, Oxford (1997)

    Google Scholar 

  13. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  14. Hyman, J.M., Shashkov, M.: Natural discretizations of the divergence, gradient and curl on logically rectangular grids. Int. J. Comput. Math. Appl. 33(4), 81–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hyman, J., Morel, J., Shashkov, M., Steinberg, S.: Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6, 333–352 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ikonen, L.: Priority pixel queue algorithm for geodesic distance transforms. Image Vis. Comput. 25(10), 1520–1529 (2007)

    Article  Google Scholar 

  17. Ikonen, L., Toivanen, P.: Shortest routes on varying height surfaces using gray-level distance transforms. Image Vis. Comput. 23(2), 133–141 (2005)

    Article  Google Scholar 

  18. Jalba, A.C., Roerdink, J.B.T.M.: An efficient morphological active surface model for volumetric image segmentation. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing. Lecture Notes in Computer Science, vol. 5720, pp. 193–204. Springer, Berlin (2009)

    Chapter  Google Scholar 

  19. Kimmel, R., Sochen, N., Malladi, R.: Images as embedding maps and minimal surfaces: movies, color, and volumetric medical images. In: Proc. 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997, pp. 350–355. IEEE Computer Society, Los Alamitos (1997)

    Chapter  Google Scholar 

  20. Klette, R., Zamperoni, P.: Handbook of Image Processing Operators. Wiley, New York (1996)

    Google Scholar 

  21. Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Processing of RI-angiocardiographic images. In: Preston, J.K., Onoe, M. (eds.) Digital Processing of Biomedical Images, pp. 187–202. Plenum, New York (1976)

    Google Scholar 

  22. Lerallut, R., Decencière, E., Meyer, F.: Image processing using morphological amoebas. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30. Springer, Dordrecht (2005)

    Google Scholar 

  23. Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)

    Article  Google Scholar 

  24. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  25. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  26. Nagao, M., Matsuyama, T.: Edge preserving smoothing. Comput. Graph. Image Process. 9(4), 394–407 (1979)

    Article  Google Scholar 

  27. Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proc. 1996 IEEE International Conference on Image Processing, Lausanne, Switzerland, Sept. 1996, vol. 1, pp. 817–820 (1996)

    Chapter  Google Scholar 

  28. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    MATH  Google Scholar 

  29. Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)

    Google Scholar 

  30. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Sixth International Conference on Computer Vision, Bombay, India, Jan. 1998, pp. 839–846. Narosa Publishing House, New Delhi (1998)

    Google Scholar 

  31. Tukey, J.W.: Exploratory Data Analysis. Addison–Wesley, Menlo Park (1971)

    Google Scholar 

  32. van den Boomgaard, R.: Decomposition of the Kuwahara–Nagao operator in terms of linear smoothing and morphological sharpening. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology: Proc. Sixth International Symposium, Sydney, Australia, Apr. 2002, pp. 283–292. CSIRO Publishing, Collingwood (2002)

    Google Scholar 

  33. Verly, J.G., Delanoy, R.L.: Adaptive mathematical morphology for range imagery. IEEE Trans. Image Process. 2(2), 272–275 (1993)

    Article  Google Scholar 

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  35. Welk, M., Breuß, M., Vogel, O.: Differential equations for morphological amoebas. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing. Lecture Notes in Computer Science, vol. 5720, pp. 104–114. Springer, Berlin (2009). Erratum: http://www.mia.uni-saarland.de/publications

    Chapter  Google Scholar 

  36. Whitaker, R.T., Xue, X.: Variable-conductance, level-set curvature for image denoising. In: Proc. 2001 IEEE International Conference on Image Processing, Thessaloniki, Greece, Oct. 2001, pp. 142–145 (2001)

    Google Scholar 

  37. Yezzi, A. Jr.: Modified curvature motion for image smoothing and enhancement. IEEE Trans. Image Process. 7(3), 345–352 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welk, M., Breuß, M. & Vogel, O. Morphological Amoebas Are Self-snakes. J Math Imaging Vis 39, 87–99 (2011). https://doi.org/10.1007/s10851-010-0228-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0228-0

Keywords

Navigation