Advertisement

Journal of Mathematical Imaging and Vision

, Volume 39, Issue 1, pp 75–85 | Cite as

Accurate Depth Dependent Lens Distortion Models: An Application to Planar View Scenarios

  • Luis Alvarez
  • Luis GómezEmail author
  • J. Rafael Sendra
Article

Abstract

In order to calibrate cameras in an accurate manner, lens distortion models have to be included in the calibration procedure. Usually, the lens distortion models used in camera calibration depend on radial functions of image pixel coordinates. Such models are well-known, simple and can be estimated using just image information. However, these models do not take into account an important physical constraint of lens distortion phenomena, namely: the amount of lens distortion induced in an image point depends on the scene point depth with respect to the camera projection plane. In this paper we propose a new accurate depth dependent lens distortion model. To validate this approach, we apply the new lens distortion model to camera calibration in planar view scenarios (that is 3D scenarios where the objects of interest lie on a plane). We present promising experimental results on planar pattern images and on sport event scenarios. Nevertheless, although we emphasize the feasibility of the method for planar view scenarios, the proposed model is valid in general and can be used in any scenario where the point depth can be estimated.

Keywords

Camera calibration Distortion model Depth dependence 3D scenarios 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alemán-Flores, M., Alvarez, L., Henríquez, P., Mazorra, L.: Morphological thick line center detection. In: Proceedings ICIAR’2010. LNCS, vol. 6111, pp. 71–80. Springer, Berlin (2010) Google Scholar
  2. 2.
    Alvarez, L., Esclarín, J., Trujillo, A.: A model based edge location with subpixel precision. In: Proceedings IWCVIA 03: International WorkShop on Computer Vision and Image Analysis (Las Palmas de Gran Canaria, Spain), pp. 29–32 (2003) Google Scholar
  3. 3.
    Alvarez, L., Gomez, L., Sendra, R.: An algebraic approach to lens distortion by line rectification. J. Math. Imaging Vis. 35(1), 36–50 (2009) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Brakhage, P., Notni, G., Kowarschik, R.: Image aberrations in optical three-dimensional measurement systems with fringe projection. Appl. Opt. 3217–3223 (2004) Google Scholar
  5. 5.
    Bräuer-Burchardt, C., Heinze, M., Munkelt, C., Kühmstedt, P., Notni, G.: Distance dependent lens distortion variation in 3D measuring systems using fringe projection. In: BMVC 2006, pp. 327–336 (2006) Google Scholar
  6. 6.
    Brown, D.C.: Close-range camera calibration. Photogr. Eng. 37, 855–866 (1971) Google Scholar
  7. 7.
    Burner, A.W.: Zoom lens calibration for wind tunnel measurements. In: Proceedings of SPIE, Videometrics IV, vol. 2598, pp. 19–33 (1995) CrossRefGoogle Scholar
  8. 8.
    Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Conference CVPR’05, pp. 1063–6919 (2005) Google Scholar
  9. 9.
    Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001) CrossRefGoogle Scholar
  10. 10.
    Dold, J.: Ein hybrides photogrammetrisches Industriemesssystemhöchster Genauigkeit und seiner Überprüfung. PhD thesis, Universität der Bundeswehr München (1997) Google Scholar
  11. 11.
    Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993) Google Scholar
  12. 12.
    Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001) zbMATHGoogle Scholar
  13. 13.
    Fraser, C.S., Shortis, M.R.: Variation of distortion within the photographic field. Photogramm. Eng. Remote Sensing. 58(6), 851–855 (1992) Google Scholar
  14. 14.
    Fryer, J.G., Mason, S.O.: Rapid lens calibration of a video camera. Photogramm. Eng. Remote Sensing 55(4), 437–444 (1989) Google Scholar
  15. 15.
    Green, P., Sun, W., Matusik, W., Durand, F.: Multi-Aperture Photography. ACM Trans. Graph. 26(3), 68 (2007) CrossRefGoogle Scholar
  16. 16.
    Hanning, T.: High precision camera calibration with a depth dependent distortion mapping. In: Proceedings International Conference on Visualization, Imaging and Image Processing Conference (VIIP), Palma de Mallorca, Spain, pp. 304–309 (2008) Google Scholar
  17. 17.
    Hartley, R., Kang, S.B.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1309–1321 (2007) CrossRefGoogle Scholar
  18. 18.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  19. 19.
    Hasinoff, S.W., Kutulakos, K.N.: Confocal stereo. Int. J. Comput. Vis. 81(1), 82–104 (2009) CrossRefGoogle Scholar
  20. 20.
    Light, D.L.: The new camera calibration system at the U.S. geological survey. Photogramm. Eng. Remote Sensing 58(2), 185–188 (1992) MathSciNetGoogle Scholar
  21. 21.
    Magill, A.A.: Variation in distortion with magnification. J. Res. Nat. Bur. Stand. 54(3), 135–142 (1955) zbMATHGoogle Scholar
  22. 22.
    Ricolfe-Viala, C., Sanchez-Salmeron, A.J.: Robust metric calibration of non-linear camera lens distortion. Pattern Recogn. 43(4), 1688–1699 (2010) CrossRefGoogle Scholar
  23. 23.
    Rosten, E., Loveland, R.: Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy. Mach. Vis. Appl. 1–9 (2009) Google Scholar
  24. 24.
    Song, G.-Y., Lee, J.-W.: Correction of radial distortion based on line-fitting. Int. J. Control, Autom. Syst. 8(3), 615–621 (2010) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Tardif, J.P., Sturm, P., Roy, S.: Self-calibration of a general radially symmetric distortion model. In: Proceedings The 9th European Conference on Computer Vision, Graz, Austria. LNCS, vol. 3954, pp. 186–199. Springer, Berlin (2006) Google Scholar
  26. 26.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987) CrossRefGoogle Scholar
  27. 27.
    Wang, J., Shi, F., Zhang, J., Liu, Y.: A new calibration model of camera lens distortion. Pattern Recogn. 41(2), 607–615 (2008) zbMATHCrossRefGoogle Scholar
  28. 28.
    Wang, J., Gu, W., Zhu, J., Zhang, J.: Calibration of lens distortion based on plane constraints. In: IEEE International Conference on Digital Image Processing, Los Alamitos, CA, USA, pp. 355–358 (2009) Google Scholar
  29. 29.
    Wang, A., Qiu, T., Shao, L.: A simple method of radial distortion correction with centre of distortion estimation. J. Math. Imaging Vis. 35(3), 165–172 (2009) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wiley, A.G., Wong, K.W.: Geometric calibration of zoom lenses for computer vision metrology. Photogramm. Eng. Remote Sensing 61(1), 69–74 (1995) Google Scholar
  31. 31.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de Informática y SistemasUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Departamento de Ingeniería Electrónica y AutomáticaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  3. 3.Departamento de MatemáticasUniversidad de AlcaláMadridSpain

Personalised recommendations