Advertisement

Journal of Mathematical Imaging and Vision

, Volume 39, Issue 1, pp 1–12 | Cite as

Direct Sparse Deblurring

  • Yifei LouEmail author
  • Andrea L. Bertozzi
  • Stefano Soatto
Open Access
Article

Abstract

We propose a deblurring algorithm that explicitly takes into account the sparse characteristics of natural images and does not entail solving a numerically ill-conditioned backward-diffusion. The key observation is that the sparse coefficients that encode a given image with respect to an over-complete basis are the same that encode a blurred version of the image with respect to a modified basis. Following an “analysis-by-synthesis” approach, an explicit generative model is used to compute a sparse representation of the blurred image, and its coefficients are used to combine elements of the original basis to yield a restored image.

Keywords

Deblurring Sparse coding Over-complete dictionary 

References

  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006) CrossRefGoogle Scholar
  2. 2.
    Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977) Google Scholar
  3. 3.
    Cai, J., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: Intl. Conf. on Comp. Vis. and Patt. Recog. (CVPR), Miami, Florida, USA, 2009 Google Scholar
  4. 4.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8) (2007) Google Scholar
  5. 5.
    Dabov, K., Foi, A., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Proc. SPIE Electronic Imaging, vol. 6812-07, San Jose, California, USA, January 2008 Google Scholar
  6. 6.
    Datsenko, D., Elad, M.: Example-based single document image super-resolution: a global map approach with outlier rejection. Multidimens. Syst. Signal Process. 18(2–3), 103–121 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dias, J.M.B.: Fast GEM wavelet-based image deconvolution algorithm. In: Intl. Conf. on Image Process. (ICIP), vol. 3, pp. 961–964 (2003) Google Scholar
  8. 8.
    Dobrosotskaya, J.A., Bertozzi, A.L.: A wavelet-Laplace variational technique for image deconvolution and inpainting. IEEE Trans. Image Process. 17(5), 657–663 (2003) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Efros, A.A., Leung, T.K.: Texture synthesis by non-parameteric sampling. In: Intl. Conf. Computer Vision (ICCV), vol. 2, pp. 1033–1038 (1999) Google Scholar
  10. 10.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Favaro, P., Soatto, S., Vese, L., Osher, S.J.: Shape from anisotropic diffusion. In: Intl. Conf. on Comp. Vis. and Patt. Recog. (CVPR), pp. 179–186 (June 2003) Google Scholar
  12. 12.
    Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12, 906–916 (2003) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Figueiredo, M., Nowak, R.: A bound optimization approach to wavelet-based image deconvolution. In: Intl. Conf. on Image Process. (ICIP), vol. 2, pp. 782–785 (2005) Google Scholar
  14. 14.
    Foi, A., Dabov, K., Katkovnik, V., Egiazarian, K.: Shape-adaptive DCT for denoising and image reconstruction. In: Proc. of SPIE Electronic Imaging, Image Processing: Algorithms and Systems V. 6064, 6064N (2006) Google Scholar
  15. 15.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. In: IEEE Computer Graphics and Applications, 2002 Google Scholar
  16. 16.
    Grenander, U.: General Pattern Theory: A Mathematical Study of Regular Structures. Cambridge University Press, Cambridge (1993) Google Scholar
  17. 17.
    Guerrero-Colon, J.A., Mancera, L., Portilla, J.: Image restoration using space-variant Gaussian scale mixtures in overcomplete pyramids. IEEE Trans. Image Process. 17(1), 27–41 (2008) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Huang, J., Mumford, D.: Statistics of natural images and models. In: Intl. Conf. on Comp. Vis. and Patt. Recog. (CVPR), pp. 541–547 (1999) Google Scholar
  19. 19.
    Lewicki, M.S., Olshausen, B.A.: Inferring sparse, overcomplete image codes using an efficient coding framework. In: Advances in Neural Information Processing 10 (Proc. NIPS ’97), pp. 815–821 (1998) Google Scholar
  20. 20.
    Ma, J., Le Dimet, F.-X.: Deblurring from highly incomplete measurements for remote sensing. IEEE Trans. Geosci. Remote Sens. 47(3), 792–802 (2009) CrossRefGoogle Scholar
  21. 21.
    Mairal, J., Elad, M., Sapiro, G.: Learning multiscale sparse representations for image and video restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Intl. Conf. Computer Vision (ICCV), vol. 2, pp. 416–423 (2001) Google Scholar
  23. 23.
    Mignotte, M.: A segmentation-based regularization term for image deconvolution. IEEE Trans. Image Process. 15(7), 1973–1984 (2006) CrossRefGoogle Scholar
  24. 24.
    Neelamani, R., Choi, H., Baraniuk, R.G.: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process. 52(2), 418–433 (2004) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the non-local-means to super-resolution reconstruction. IEEE Trans. Image Process 36 (2009) Google Scholar
  27. 27.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) zbMATHCrossRefGoogle Scholar
  28. 28.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 347–364 (2007) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Takeda, H., Farsiu, S., Milanfar, P.: Deblurring using regularized locally adaptive kernel regression. IEEE Trans. Image Process. 17(4), 550–563 (2008) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Wiley, New York (1977) Google Scholar
  31. 31.
    Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Intl. Conf. on Comp. Vis. and Patt. Recog. (CVPR), 2008 Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Yifei Lou
    • 1
    Email author
  • Andrea L. Bertozzi
    • 1
  • Stefano Soatto
    • 2
  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Computer Science DepartmentUCLALos AngelesUSA

Personalised recommendations