Skip to main content
Log in

Generalized Convexity in Multiple View Geometry

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Recent work on geometric vision problems has exploited convexity properties in order to obtain globally optimal solutions. In this paper we give an overview of these developments and show the tight connections between different types of convexity and optimality conditions for a large class of multiview geometry problems. We also show how the convexity properties are closely linked to different types of optimization algorithms for computing the solutions. Moreover, it is also demonstrated how convexity can be used for detection and removal of outliers. The theoretical findings are accompanied with illustrative examples and experimental results on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surv. 30(4), 412–458 (1998)

    Article  Google Scholar 

  2. Agarwal, S., Snavely, N., Seitz, S.M.: Fast algorithms for L problems in multiview geometry. In: Int. Conf. on Computer Vision and Pattern Recognition. Anchorage, USA (2008)

  3. Åström, K., Enqvist, O., Olsson, C., Kahl, F., Hartley, R.: An L approach to structure and motion problems in 1d-vision. In: International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)

  4. Bazaraa, Sherali, Shetty: Nonlinear Programming, Theory and Algorithms. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  6. Farenzena, M., Fusiello, A., Dovier, A.: Reconstruction with interval constraints propagation. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 1185–1190, New York City, USA (2006)

  7. Hartley, R., Kahl, F.: Global optimization through rotation space search. Int. J. Comput. Vis. 82(1), 64–79 (2009)

    Article  Google Scholar 

  8. Hartley, R., Schaffalitzky, F.: L minimization in geometric reconstruction problems. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 504–509, Washington DC, USA (2004)

  9. Hartley, R., Seo, Y.: Verifying global minima for L 2 minimization problems. In: Proc. Conf. Computer Vision and Pattern Recognition, Anchorage, USA (2008)

  10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  11. Kahl, F.: Multiple view geometry and the L -norm. In: International Conference on Computer Vision, pp. 1002–1009, Beijing, China (2005)

    Google Scholar 

  12. Kahl, F., Hartley, R.: Multiple view geometry under the L -norm. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1603–1617 (2008)

    Article  Google Scholar 

  13. Ke, Q., Kanade, T.: Uncertainty models in quasiconvex optimization for geometric reconstruction. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 1199–1205, New York City, USA (2006)

  14. Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1834–1847 (2007)

    Article  Google Scholar 

  15. Li, H.: A practical algorithm for L triangulation with outliers. In: Proc. Conf. Computer Vision and Pattern Recognition, Minneapolis, USA (2007)

  16. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (2004)

  17. Matousek, J.: On the geometric optimization with few violated constraints. In: Symposium on Computational Geometry, pp. 312–321 (1994)

  18. Olsson, C., Eriksson, A., Kahl, F.: Efficient optimization of L -problems using pseudoconvexity. In: International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)

  19. Olsson, C., Enqvist, O., Kahl, F.: A polynomial-time bound for matching and registration with outliers. In: Proc. Conf. Computer Vision and Pattern Recognition, Anchorage, USA (2008)

  20. Olsson, C., Kahl, F., Hartley, R.: Projective least-squares: global solutions with local optimization. In: Proc. Conf. Computer Vision and Pattern Recognition, Miami, USA (2009)

  21. Ponstein, J.: Seven kinds of convexity. SIAM Rev. 9(1), 115–119 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  23. Sim, K., Hartley, R.: Recovering camera motion using the L -norm. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 1230–1237, New York City, USA (2006)

  24. Sim, K., Hartley, R.: Removing outliers using the L -norm. In: Proc. Conf. Computer Vision and Pattern Recognition, pp. 485–492, New York City, USA (2006)

  25. Sturm, J.F.: Using Sedumi 1.02, a Matlab toolbox for optimization over symmetric cones (1998)

  26. Vanderbei, R.J., Shanno, D.F.: An interior point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Olsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, C., Kahl, F. Generalized Convexity in Multiple View Geometry. J Math Imaging Vis 38, 35–51 (2010). https://doi.org/10.1007/s10851-010-0207-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0207-5

Keywords

Navigation