Skip to main content
Log in

Unified Computation of Strict Maximum Likelihood for Geometric Fitting

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A new numerical scheme is presented for computing strict maximum likelihood (ML) of geometric fitting problems having an implicit constraint. Our approach is orthogonal projection of observations onto a parameterized surface defined by the constraint. Assuming a linearly separable nonlinear constraint, we show that a theoretically global solution can be obtained by iterative Sampson error minimization. Our approach is illustrated by ellipse fitting and fundamental matrix computation. Our method also encompasses optimal correction, computing, e.g., perpendiculars to an ellipse and triangulating stereo images. A detailed discussion is given to technical and practical issues about our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S.J., Rauh, W., Cho, H.S., Warecke, H.-J.: Orthogonal distance fitting of implicit curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 24, 620–638 (2002)

    Article  Google Scholar 

  2. Atieg, A., Watson, G.A.: A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances. J. Comput. Appl. Math. 158, 277–296 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartoli, A., Sturm, P.: Nonlinear estimation of fundamental matrix with minimal parameters. IEEE Trans. Pattern Anal. Mach. Intell. 26, 426–432 (2004)

    Article  Google Scholar 

  4. Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA (1996)

    MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  6. Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comput. Stat. Data Anal. 47, 713–728 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1294–1303 (2000)

    Article  Google Scholar 

  8. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: A new constrained parameter estimator for computer vision applications. Image Vis. Comput. 22, 85–91 (2004)

    Article  Google Scholar 

  9. Föstner, W.: On weighting and choosing constraints for optimally reconstructing the geometry of image triplets. In: Proc. 6th Eur. Conf. Comput. Vision, Dublin, Ireland, June/July 2000, vol. 2, pp. 669–701

  10. Gander, W., Golub, H., Strebel, R.: Least-squares fitting of circles and ellipses. BIT 34, 558–578 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harker, M., O’Leary, P.: First order geometric distance (The myth of Sampsonus). In: Proc. 17th Brit. Mach. Vision Conf., Edinburgh, UK, September 2006, vol. 1, pp. 87–96

  12. Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19, 580–593 (1997)

    Article  Google Scholar 

  13. Hartley, R., Kahl, F.: Optimal algorithms in multiview geometry. In: Proc. 8th Asian Conf. Comput. Vision, Tokyo, Japan, November 2007, vol. 1, pp. 13–34

  14. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68, 146–157 (1997)

    Article  Google Scholar 

  15. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Science, Amsterdam (1996); reprinted Dover, New York, 2005

    MATH  Google Scholar 

  17. Kanatani, K.: Cramer-Rao lower bounds for curve fitting. Graph. Models Image Process. 60, 93–99 (1998)

    Article  Google Scholar 

  18. Kanatani, K.: Statistical optimization for geometric fitting: theoretical accuracy analysis and high order error analysis. Int. J. Comput. Vis. 80, 167–188 (2008)

    Article  Google Scholar 

  19. Kanatani, K., Ohta, N.: Comparing optimal three-dimensional reconstruction for finite motion and optical flow. J. Electron. Imaging 12, 478–488 (2003)

    Article  Google Scholar 

  20. Kanatani, K., Sugaya, Y.: High accuracy fundamental matrix computation and its performance evaluation. IEICE Trans. Inf. Syst. E90-D, 579–585 (2007)

    Article  Google Scholar 

  21. Kanatani, K., Sugaya, Y.: Extended FNS for constrained parameter estimation. In: Proc. Meeting Image Recognition and Understanding, Hiroshima, Japan, July–August 2007, pp. 219–226

  22. Kanatani, K., Sugaya, Y.: Performance evaluation of iterative geometric fitting algorithms. Comput. Stat. Data Anal. 52, 1208–1222 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kanatani, K., Sugaya, Y.: Compact fundamental matrix computation. IPSJ Trans. Comput. Vision Appl. 2, 59–70 (2010)

    Article  Google Scholar 

  24. Kanatani, K., Sugaya, Y., Niitsuma, H.: Triangulation from two views revisited: Hartley-Sturm vs. optimal correction. In: Proc. 19th British Machine Vision Conf., Leeds, UK, September 2008, pp. 173–182

  25. Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: Problems with bilinear constraint. Int. J. Comput. Vis. 37, 127–150 (2000)

    Article  MATH  Google Scholar 

  26. Matei, B.C., Meer, P.: Estimation of nonlinear errors-in-variables models for computer vision applications. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1537–1552 (2006)

    Article  Google Scholar 

  27. Mikhail, E.M., Ackermann, F.: Observations and Least Squares. University Press of America, Lanham (1976)

    Google Scholar 

  28. Sampson, P.D.: Fitting conic sections to “very scattered” data: an iterative refinement of the Bookstein algorithm. Comput. Graph. Image Process. 18, 97–108 (1982)

    Article  Google Scholar 

  29. Sturm, P., Gargallo, P.: Conic fitting using the geometric distance. In: Proc. 8th Asian Conf. Comput. Vision, Tokyo, Japan, November 2007, vol. 2, pp. 784–795

  30. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, pp. 298–375. Springer, Berlin (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Kanatani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanatani, K., Sugaya, Y. Unified Computation of Strict Maximum Likelihood for Geometric Fitting. J Math Imaging Vis 38, 1–13 (2010). https://doi.org/10.1007/s10851-010-0206-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0206-6

Keywords

Navigation