Skip to main content

Advertisement

Log in

Brownian Warps for Non-Rigid Registration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A Brownian motion model in the group of diffeomorphisms has been introduced as inducing a least committed prior on warps. This prior is source-destination symmetric, fulfills a natural semi-group property for warps, and with probability 1 creates invertible warps. Using this as a least committed prior, we formulate a Partial Differential Equation for obtaining the maximally likely warp given matching constraints derived from the images. We solve for the free boundary conditions, and the bias toward smaller areas in the finite domain setting. Furthermore, we demonstrate the technique on 2D images, and show that the obtained warps are also in practice source-destination symmetric and in an example on X-ray spine registration provides extrapolations from landmark point superior to those of spline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amini, A.A., Curwen, R.W., Gore, J.C.: Snakes and splines for tracking non-rigid heart motion. In: ECCV96, pp. II:251–261 (1996)

  2. Andresen, P.R., Nielsen, M.: Non-rigid registration by geometry-constrained diffusion. Med. Image Anal. 6, 81–88 (2000)

    Google Scholar 

  3. Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. CVGIP 46, 1–21 (1989)

    Google Scholar 

  4. Faisal Beg, M., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  8. Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Proc. Visualization in Biomedical Imaging (VBC’96), pp. 267–276 (1996)

  9. Christensen, G.E., He, J.: Consistent nonlinear elastic image registration. In: MMBIA01, p. 37 (2001)

  10. Christensen, G.E., Miller, M.I., Vannier, M.: A 3d deformable magnetic resonance textbook based on elasticity. In: AAAI Spring Symposion Series, pp. 153–156. Standford University Press, Standford (1994)

    Google Scholar 

  11. Faugeras, O., Hermosillo, G.: Well-posedness of eight problems of multi-modal statistical image-matching. Technical Report, INRIA, August 2001. Research Report 4235

  12. Gill, R.D., Johansen, S.: A survey of product-integration with a view toward application un survival analysis. Ann. Stat. 18(4), 1501–1555 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Högnäs, G., Mukherjea, A.: Probability Measures on Semigroups. Plenum, New York (1995)

    MATH  Google Scholar 

  14. Jackson, A.D., Lautrup, B., Johansen, P., Nielsen, M.: Products of random matrices. Phys. Rev. E 66(6), 5 (2002). Technical Report, article 66124

    Article  MathSciNet  Google Scholar 

  15. Joshi, S., Miller, M.M.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maintz, J., Viergever, M.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  17. Markussen, B.: Large deformation diffeomorphisms with application to optic flow. Comput. Vis. Image Underst. 106, 97–105 (2007)

    Article  Google Scholar 

  18. Nielsen, M.: Evaluation of Brownian warps for shape alignment. In: Proc. of SPIE Medical Imaging 2007 (2007)

  19. Nielsen, M., Johansen, P., Jackson, A.D., Lautrup, B.: Brownian warps: A least committed prior for non-rigid registration. In: MICCAI (2), pp. 557–564 (2002)

  20. Nielsen, M., Markussen, B.: From Bayes to PDEs in image warping. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Mathematical Models in Computer Vision: The Handbook. Springer, Berlin (2005)

    Google Scholar 

  21. Rissanen, J.: Stochastic Complexity in Statistical Enquiry. World Scientific, Singapore (1989)

    Google Scholar 

  22. Rohr, K.: Landmark-Based Image Analysis: Using Geometric and Intensity Models. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  23. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  24. Viola, P.A.: Alignment by maximization of mutual information. Technical Report AITR-1548 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Hauberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M., Johansen, P., Jackson, A.D. et al. Brownian Warps for Non-Rigid Registration. J Math Imaging Vis 31, 221–231 (2008). https://doi.org/10.1007/s10851-008-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0083-4

Keywords

Navigation