Skip to main content
Log in

A Truncated Lagrange Method for Total Variation-Based Image Restoration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In the last years, Total Variation minimization has become a popular and valuable technique for the restoration of noisy and blurred images. In this paper, we present a new technique for image restoration based on Total Variation minimization and the discrepancy principle. The new approach replaces the original image restoration problem with an equality constrained minimization problem. An inexact Newton method is applied to the first-order conditions of the constrained problem. The stopping criterium is derived from the discrepancy principle. Numerical results of image denoising and image deblurring test problems are presented to illustrate the effectiveness of the new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of total variation penalty methods. Inverse Probl. 10, 1217–1229 (1994)

    Article  MATH  Google Scholar 

  2. Avriel, M.: Nonlinear Programming: Analysis and Methods. Dover, New York (2003)

    MATH  Google Scholar 

  3. Bertsekas, D.: Convex Analysis and Optimization. Athena Scientific (2003)

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89–97 (2004)

    Article  Google Scholar 

  5. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  Google Scholar 

  6. Chan, R.H., Chan, T.F., Zhou, H.M.: Continuation method for total variation denoising problems. Technical Report 95-18, University of California, Los Angeles (1995)

  7. Chan, R.H., Chan, T.F., Zhou, H.M.: Recent developments in total variation image restoration. Technical Report 05-01, University of California, Los Angeles (2005)

  8. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  Google Scholar 

  9. Combettes, P.L., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE Trans. Image Proc. 11, 1295–1304 (2002)

    Article  Google Scholar 

  10. Combettes, P.L., Pesquet, J.-C.: Image restoration subject to a total variation constraint. IEEE Trans. Image Proc. 13, 1213–1222 (2004)

    Article  Google Scholar 

  11. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MATH  Google Scholar 

  12. Dibos, F., Koepfler, G.: Global total variation minimization. SIAM J. Numer. Anal. 37(2), 646–664 (2000)

    Article  MATH  Google Scholar 

  13. Dobson, D., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997)

    Article  MATH  Google Scholar 

  14. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 393–422 (1994)

    Article  MATH  Google Scholar 

  15. Eisenstat, S.C., Walker, H.F.: Choosing the forcing term in an inexact Newton method. SIAM J. Sci. Comput. 17, 16–32 (1996)

    Article  MATH  Google Scholar 

  16. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1983)

    Google Scholar 

  17. Hanke, M., Nagy, G.: Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques. Inverse Probl. 12, 157–173 (1996)

    Article  MATH  Google Scholar 

  18. Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6, 1–35 (1994)

    Article  MATH  Google Scholar 

  19. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Google Scholar 

  20. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  21. Landi, G.: A fast truncated Lagrange method for large-scale image restoration problems. Appl. Math. Comput. 186(2), 1075–1082 (2007)

    Article  MATH  Google Scholar 

  22. Landi, G.: Lagrangian methods for the regularization of discrete ill-posed problems. ALMA-DL, Digital Library of the University of Bologna, AMS Acta c.i. 1129, pp. 1–60, June 2005, http://amsacta.cib.unibo.it/archive/00001129/

  23. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Proc. 5, 987–995 (1996)

    Article  Google Scholar 

  24. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  25. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Proc. 11, 1450–1456 (2002)

    Article  Google Scholar 

  26. Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7, 414–417 (1966)

    MATH  Google Scholar 

  27. Nagy, J.G., Palmer Lee, K., Perrone, L.: Iterative methods for image restoration: a Matlab object oriented approach. Numer. Algorithms 36, 73–93 (2003)

    Article  Google Scholar 

  28. Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image restoration: a Matlab object oriented approach. Numer. Algorithms 36, 73–93 (2003)

    Article  Google Scholar 

  29. Nagy, J.G., Plemmons, R.J., Torgersen, T.C.: Iterative image restoration using approximate inverse preconditioners. IEEE Trans. Image Proc. 5(7), 1151–1162 (1996)

    Article  Google Scholar 

  30. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  31. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MATH  Google Scholar 

  32. Paige, C.C., Saunders, M.A.: LSQR: Sparse linear equations and least squares problems. ACM TOMS 4, 195–209 (1982)

    Article  Google Scholar 

  33. Roggemann, M.C., Welsh, B.: Imaging Through Torbolence. CRC Press, Boca Raton (1996)

    Google Scholar 

  34. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  35. Vogel, C.R.: Nonsmooth regularization. In: Engl, H.W., Louis, A.K., Rundell, W. (eds.) Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)

    Google Scholar 

  36. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  37. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  Google Scholar 

  38. Vogel, C.R., Oman, M.E.: Fast, robust total variation–based reconstruction of noisy, blurred images. IEEE Trans. Image Proc. 7, 813–824 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Landi.

Additional information

This work was supported by the Italian FIRB Project “Parallel Algorithms and Nonlinear Numerical Optimization” RBAU01JYPN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, G. A Truncated Lagrange Method for Total Variation-Based Image Restoration. J Math Imaging Vis 28, 113–123 (2007). https://doi.org/10.1007/s10851-007-0016-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0016-7

Keywords

Navigation