Skip to main content

Advertisement

Log in

Texture-Oriented Anisotropic Filtering and Geodesic Active Contours in Breast Tumor Ultrasound Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we present an anisotropic filter for speckle reduction in ultrasound images and an adaptation of the geodesic active contours technique for the segmentation of breast tumors. The anisotropic diffusion we propose is based on a texture description provided by a set of Gabor filters and allows reducing speckle noise while preserving edges. Furthermore, it is used to extract an initial pre-segmentation of breast tumors which is used as initialization for the active contours technique. This technique has been adapted to the characteristics of ultrasonography by adding certain texture-related terms which provide a better discrimination of the regions inside and outside the nodules. These terms allow obtaining a more accurate contour when the gradients are not high and uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez, L., Mazorra, L.: Signal and image restoration using shock filter and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brox, T., Weickert, J.: Level set based image segmentation with multiple regions. In: Pattern Recognition. Lecture Notes in Computer Science, vol. 3175, pp. 415–423 (2004)

  3. Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image Vis. Comput. 24(1), 41–55 (2006)

    Article  Google Scholar 

  4. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. of Fifth International Conference on Computer Vision, pp. 694–699 (1995)

  6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geometric active contours for image segmentation. In: Bovik, A. (ed.) Handbook of Video and Image Processing, 2nd edn., pp. 613–627 (2005)

  8. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  9. Chan, T., Vese, L.: An active contour model without edges. In: Scale-Space Theory in Computer Vision. Lecture Notes in Computer Science, vol. 1682, pp. 141–151 (1999)

  10. Chan, T.F., Vese, L.A.: Active contours and segmentation models using geometric pde’s for medical imaging. In: Malladi, R. (ed.) Geometric Methods in Bio-Medical Image Processing, Series: Mathematics and Visualization, pp. 63–75. Springer, Berlin (2002)

    Google Scholar 

  11. Chen, D.R., Chang, R.F., Juang, Y.L.: Computer-aided diagnosis applied to us of solid breast nodules by using neural networks. Radiology 213, 407–412 (1999)

    Google Scholar 

  12. Cheng, C.M., Chou, Y.H., Han, K.C., Hung, G.S., Tiu, C.M., Chiou, H.J., Chiou, S.Y.: Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 226, 504–514 (2003)

    Article  Google Scholar 

  13. Cohen, L.D.: On active contour models and balloons. Comput. Vis. Graph. Image Process. 53(2), 211–218 (1991)

    MATH  Google Scholar 

  14. Cremers, D., Soatto, S.: Motion Competition: A variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)

    Article  Google Scholar 

  15. Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50, 295–313 (2002)

    Article  MATH  Google Scholar 

  16. Davis, E.R.: On the noise suppression and image enhancement characteristics of the median, truncated median and mode filters. Pattern Recognit. Lett. 7, 87–97 (1988)

    Article  Google Scholar 

  17. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4, 157–165 (1982)

    Google Scholar 

  18. Gabor, D.: Theory of communications. J. IEEE 93, 429–459 (1946)

    Google Scholar 

  19. Heiler, M., Schnörr, C.: Natural image statistics for natural image. Int. J. Comput. Vis. 63(1), 5–19 (2005)

    Article  Google Scholar 

  20. Hernandez, M., Frangi, A.F.: Geodesic active regions using nonparametric statistical regional description and their application to aneurysm segmentation from CTA. LNCS 3150, 94–102 (2004)

    Google Scholar 

  21. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: 1st International Conference on Computer Vision, pp. 259–268 (1987)

  22. Kaufhold, J., Chan, R., Karl, W.C., Castanon, D.A.: Ultrasound tissue analysis and characterization. In: Proc. of SPIE, pp. 73–83 (1999)

  23. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134(3), 275–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kimmel, R., Bruckstein, A.M.: On regularized Laplacian zero crossings and other optimal edge integrators. Int. J. Comput. Vis. 53, 225–243 (2003)

    Article  Google Scholar 

  25. Kuan, D.T., Sawchuck, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 7, 165–177 (1985)

    Google Scholar 

  26. Kuo, W.J., Chang, R.F., Moon, W.K., Lee, C.C., Chen, D.R.: Computeraided diagnosis of breast tumors with different us systems. Acad. Radiol. 9, 793–799 (2002)

    Article  Google Scholar 

  27. Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Article  Google Scholar 

  28. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)

    Article  Google Scholar 

  29. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: Proc. of International Conference on Computer Vision (1999)

  31. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  32. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 699–704 (2003)

  33. Rousson, M., Cremers, D.: Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Gerig, G. (ed.) Medical Image Comput. and Comp.-Ass. Interv. (MICCAI). LNCS Springer, vol. 3750, pp. 757–764 (2005)

  34. Sagiv, C., Sochen, N.: Integrated active contours for texture segmentation. IEEE Trans. Image Process. 1(1), 415–423 (2004)

    Google Scholar 

  35. Sandberg, B., Chan, T., Vese, L.: A level-set and Gabor-based active contour algorithm for segmenting textured images. Technical Report 39, Math. Dept. UCLA, Los Angeles, USA, July 2002

  36. Stavros, A.T., Thickman, D., Rapp, C.L., Dennis, M.A., Parker, S.H., Sisney, G.A.: Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions. Radiology 196(1), 123–134 (1995)

    Google Scholar 

  37. Weickert, J.: Anisotropic diffusion in image processing. In: ECMI Series, Teubner, Stuttgart (1998)

  38. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Alemán-Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alemán-Flores, M., Álvarez, L. & Caselles, V. Texture-Oriented Anisotropic Filtering and Geodesic Active Contours in Breast Tumor Ultrasound Segmentation. J Math Imaging Vis 28, 81–97 (2007). https://doi.org/10.1007/s10851-007-0015-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0015-8

Keywords

Navigation