Skip to main content

On Topological Watersheds


In this paper, we investigate topological watersheds (Couprie and Bertrand, 1997). One of our main results is a necessary and sufficient condition for a map G to be a watershed of a map F, this condition is based on a notion of extension. A consequence of the theorem is that there exists a (greedy) polynomial time algorithm to decide whether a map G is a watershed of a map F or not. We introduce a notion of “separation between two points” of an image which leads to a second necessary and sufficient condition. We also show that, given an arbitrary total order on the minima of a map, it is possible to define a notion of “degree of separation of a minimum” relative to this order. This leads to a third necessary and sufficient condition for a map G to be a watershed of a map F. At last we derive, from our framework, a new definition for the dynamics of a minimum.

This is a preview of subscription content, access via your institution.


  1. G. Bertrand, “Some properties of topological greyscale watersheds” IS&T/SPIE Symposium on Electronic Imaging, Vision Geometry XII, Vol. 5300, pp. 127–137, 2004.

    Google Scholar 

  2. G. Bertrand, “A new definition for the dynamics” inMathematical Morphology 40 Years on, C. Ronse, L. Najman, and E. Decencière (Eds.), Kluwer Academic Publishers, pp. 197–206, 2005.

  3. S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detection” in Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France, 1979.

  4. S. Beucher and F. Meyer, “The morphological approach to segmentation: The watershed transformation” inMathematical Morphology in Image Processing, E. Dougherty (Ed.), Marcel Decker, 1993, pp. 433–481.

  5. R. Bing, “Some aspects of the topology of 3-manifolds related to the Poincaré conjecture” inLectures on Modern Mathematics II, 1964. T.L. Saaty (Ed.), Wiley, pp. 93–128.

  6. M. Couprie and G. Bertrand, “Topological grayscale watershed transform” in SPIE Vision Geometry V Proceedings, Vol. 3168, pp. 136–146, 1997.

    Google Scholar 

  7. M. Couprie and G. Bertrand, “Tesselations by connection in orders” in Proc. 9th DGCI, G. Borgefors, I. Nyström, and G. Sanniti di Baja (Eds.),Lecture Notes in Computer Sciences, Springer Verlag, 1953, pp. 15–26, 2000.

  8. M. Couprie, L. Najman, and G. Bertrand, “Quasi-linear algorithms for the topological watershed”Journal of Mathematical Imaging and Vision, Vol. 22, Nos. 2/3 pp. 231–249, 2005.

    Google Scholar 

  9. P. Giblin,Graphs, surfaces and homology, Chapman and Hall, 1981.

  10. M. Grimaud, “A new measure of contrast: Dynamics” inSPIE Vol. 1769, Image Algebra and Morphological Processing III,1992, pp. 292–305.

  11. H. Heijmans, “Theoretical aspects of gray-level morphology” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No. 6, pp. 568–592, 1991.

    Google Scholar 

  12. T. Kong and A. Rosenfeld, “Digital topology: Introduction and survey” Comp. Vision, Graphics and Image Proc., Vol. 48, pp. 357–393, 1989.

    Google Scholar 

  13. B. Korte and L. Lovász, “Structural properties of greedoids”Combinatorica, Vol. 3, pp. 359–374, 1983.

    Google Scholar 

  14. F. Maisonneuve, “Sur le partage des eaux” tech. rep., CMM, Ecole des Mines, Dec. 1982.

  15. J.C. Maxwell, “On hills and dales”Philosophical Magazine, pp. 233–240, 1870.

  16. F. Meyer, “Un algorithme optimal de ligne de partage des eaux” inActes du 8ème Congrès AFCET,Lyon-Villeurbanne, France, 1991, pp. 847–859.

  17. F. Meyer, “Topographic distance and watershed lines”Signal Processing, Vol. 38, pp. 113–126, 1994. Special issue on Mathematical Morphology.

    Google Scholar 

  18. F. Meyer, “The dynamics of minima and contours” inISMM 3rd,Computational Imaging and Vision, R.S.P. Maragos and M. Butt (Eds.), Kluwer Academic Publishers, 1996, pp. 329–336.

  19. L. Najman and M. Couprie, “Watershed algorithms and contrast preservation” inProc. 11th DGCI, I. Nyström, G. Sanniti di Baja, and S. Svensson (Eds.),Lecture Notes in Computer Sciences, Springer Verlag, Vol. 2886, pp. 62–71, 2003.

  20. L. Najman and M. Couprie, “Quasi-linear algorithm for the component tree” IS&T/SPIE Symposium on Electronic Imaging, Vision Geometry XII, Vol. 5300, pp. 98–107, 2004.

    Google Scholar 

  21. L. Najman, M. Couprie, and G. Bertrand, “Watersheds, mosaics and the emergence paradigm”Discrete Applied Mathematics, to appear.

  22. L. Najman and M. Schmitt, “Watershed of a continuous function”Signal Processing, Vol. 38, pp. 99–112, 1994. Special issue on Mathematical Morphology.

    Google Scholar 

  23. L. Najman and M. Schmitt, “Geodesic saliency of watershed contours and hierarchical segmentation”IEEE Trans. on PAMI, Vol. 18, pp. 1163–1173, 1996.

    Google Scholar 

  24. J. Roerdink and A. Meijster, “The watershed transform: Definitions, algorithms and parallelization strategies”Fundamenta Informaticae, Vol. 41, pp. 187–228, 2000.

    Google Scholar 

  25. A. Rosenfeld, “Fuzzy digital topology”Information and Control Vol. 40, pp. 76–87, 1979.

    Google Scholar 

  26. A. Rosenfeld, “The fuzzy geometry of image subsets”Pattern Recognition Letters, Vol. 2, pp. 311–317, 1984.

    Google Scholar 

  27. J. Serra,Image Analysis and Mathematical Morphology, Vol. II, Th. Advances, Academic Press, 1988.

  28. J. Stillwell,Classical Topology and Combinatorial Group Theory, Springer-Verlag, 1980.

  29. J.K. Udupa and S. Samarsekara, “Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation” Graphical Models Image Processing, Vol. 58, pp. 246–261, 1996.

    Google Scholar 

  30. L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations”IEEE Trans. on PAMI, Vol. 13, pp. 583–598, 1991.

    Google Scholar 

  31. P.D. Wendt, E.J. Coyle, and N.C. Gallagher, Jr., “Stack filters” IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-34, pp. 898–911, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Gilles Bertrand received his Ingénieur’s degree from the École Centrale des Arts et Manufactures in 1976. Until 1983 he was with the Thomson-CSF company, where he designed image processing systems for aeronautical applications. He received his Ph.D. from the École Centrale in 1986. He is currently teaching and doing research with the Laboratoire Algorithmique et Architecture des Systémes Informatiques, ESIEE, Paris, and with the Institut Gaspard Monge, Université de Marne-la-Vallée. His research interests are image analysis, discrete topology and mathematical morphology.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bertrand, G. On Topological Watersheds. J Math Imaging Vis 22, 217–230 (2005).

Download citation

  • Issue Date:

  • DOI:


  • mathematical morphology
  • discrete topology
  • graph
  • watershed
  • dynamics
  • separation