Skip to main content

Subatomic Negation


The operators of first-order logic, including negation, operate on whole formulae. This makes it unsuitable as a tool for the formal analysis of reasoning with non-sentential forms of negation such as predicate term negation (e.g., negatively affixed gradable adjectives). We extend its language with negation operators whose scope is more narrow than an atomic formula. Exploiting the usefulness of subatomic proof-theoretic considerations for the study of subatomic inferential structure, we define intuitionistic subatomic natural deduction systems which have several subatomic operators and an additional operator for formula negation at their disposal. We establish normalization and subexpression (resp. subformula) property results for the systems. The normalization results allow us to formulate a proof-theoretic semantics for formulae composed of the subatomic operators. We illustrate the systems with applications to reasoning with combinations of sentential negation, predicate term negation (of adjectives, verbs, and common nouns), subject term negation, and antonymy.

This is a preview of subscription content, access via your institution.


  • Åqvist, L. (1981). Predicate calculi with adjectives and nouns. Journal of Philosophical Logic, 10(1), 1–26.

    Article  Google Scholar 

  • Dummett, M. (1991). The logical basis of metaphysics. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Englebretsen, G. (1974). A note on contrariety. Notre Dame Journal of Formal Logic, 15(4), 613–614.

    Article  Google Scholar 

  • Francez, N. (2015). Proof-theoretic semantics. London: College Publications.

    Google Scholar 

  • Gabbay, D. M., & Wansing, H. (Eds.). (1999). What is negation?. Dordrecht: Kluwer.

    Google Scholar 

  • Geach, P. T. (1972). Contradictories and contraries. In Logic matters (pp. 70–74). Oxford: Basil Blackwell (Reprint: Berkeley and Los Angeles/CA: University of California Press, 1980). (First published in Analysis 29(6): 187-190, 1969).

  • Gentzen, G. (1934). Untersuchungen über das logische Schließ en I, II. Mathematische Zeitschrift, 39(176–210), 405–431.

    Google Scholar 

  • Horn, L. R. (1989). A natural history of negation. Chicago: University of Chicago Press. (Reissue edition: Stanford/CA, CSLI Publications, 2001).

  • Horn, L. R. (2005). An un-paper for the unsyntactician. In S. Mufwene, et al. (Eds.), Polymorphous linguistics: Jim McCawley’s legacy (pp. 329–365). Cambridge, MA: MIT Press.

    Google Scholar 

  • Horn, L. R., & Wansing, H. (2017). Negation. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Spring 2017 Edition).

  • Humberstone, L. (2005). Contrariety and subcontrariety: The anatomy of negation (with special reference to an example of J.-Y. Béziau). Theoria, 71(3), 241–262.

    Article  Google Scholar 

  • Humberstone, L. (2011). The connectives. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Kahle, R., & Schroeder-Heister, P., Eds., (2006). Special issue on proof-theoretic semantics, Synthese 148(3).

  • McCall, S. (1967). Contrariety. Notre Dame Journal of Formal Logic, 8(1/2), 121–132.

    Article  Google Scholar 

  • Moss, L. S. (2015). Natural logic. In S. Lappin & C. Fox (Eds.), The handbook of contemporary semantic theory (2nd ed., pp. 561–592). Oxford: Wiley.

    Google Scholar 

  • Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Paoli, F. (1999). Comparative logic as an approach to comparison in natural language. Journal of Semantics, 16(1), 76–96.

    Article  Google Scholar 

  • Piecha, T., & Schroeder-Heister, P. (Eds.). (2016). Advances in proof-theoretic semantics. Cham: Springer.

    Google Scholar 

  • Pratt-Hartmann, I., & Moss, L. S. (2009). Logics for the relational syllogistic. The Review of Symbolic Logic, 2(4), 647–683.

    Article  Google Scholar 

  • Prawitz, D. (1965). Natural deduction. A proof-theoretical study. Stockholm: Almqvist & Wiksell. (Reprint: Mineola/NY, Dover Publications, 2006).

  • Prawitz, D. (2006). Meaning approached via proofs. Synthese, 148(3), 507–524.

    Article  Google Scholar 

  • Prawitz, D. (2019). The fundamental problem of general proof theory, Studia Logica 107: 11-29. Special issue on General Proof Theory edited by T. Piecha and P. Schroeder-Heister.

  • Schroeder-Heister, P. (2018). Proof-theoretic semantics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (spring 2018 Edition).

  • Sommers, F. (1970). The calculus of terms. Mind, 79(313), 1–39.

    Article  Google Scholar 

  • Sommers, F., & Englebretsen, G. (2000). An invitation to formal reasoning: The logic of terms. Aldershot: Ashgate.

    Google Scholar 

  • Speranza, J. L., & Horn, L. R. (2012). A brief history of negation. In D. M. Gabbay, F. J. Pelletier, & J. Woods (Eds.), Logic: A history of its central concepts Vol. 11 (Handbook of the History of Logic) (pp. 127–174). Amsterdam: Elsevier.

  • Troelstra, A. S., & Schwichtenberg, H. (2000). Basic proof theory (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • van Dalen, D. (2002). Intuitionistic logic. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 5, pp. 1–114). Dordrecht: Springer.

    Google Scholar 

  • Vinopal, M. (2017). He was born of a non-Virgin non-Mary.

  • Wansing, H., ed. (1996). Negation. a notion in focus. Berlin: de Gruyter (Reprint edition: 2010).

  • Wansing, H. (2000). The idea of a proof-theoretic semantics. Studia Logica, 64(1), 3–20.

    Article  Google Scholar 

  • Wansing, H. (2006). Contradiction and contrariety: Priest on negation. In J. Malinowski & A. Pietruszczak (Eds.), Essays in logic and ontology (pp. 81–93). Amsterdam: Rodopi.

    Google Scholar 

  • Więckowski, B. (2011). Rules for subatomic derivation. The Review of Symbolic Logic, 4(2), 219–236.

    Article  Google Scholar 

  • Więckowski, B. (2016). Refinements of subatomic natural deduction. Journal of Logic and Computation, 26(5), 1567–1616.

    Article  Google Scholar 

  • Więckowski, B. (2016). Subatomic natural deduction for a naturalistic first-order language with non-primitive identity. Journal of Logic, Language and Information, 25(2), 215–268.

    Article  Google Scholar 

Download references


I would like to thank the three anonymous reviewers for their perceptive comments and suggestions. I also thank the discussants at the Wilhelm-Schickard-Institute’s logic colloquium (University of Tübingen) and those at the 10th Scandinavian Logic Symposium (University of Gothenburg) where earlier versions of this paper have been presented in 2018. Support by the DFG (Project: Proof-theoretic foundations of intensional semantics; Grant: WI 3456/4-1) is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bartosz Więckowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Więckowski, B. Subatomic Negation. J of Log Lang and Inf 30, 207–262 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Affixal negation
  • Contrariety
  • Negation
  • Predicate term negation
  • Proof theory
  • Proof-theoretic semantics