Journal of Logic, Language and Information

, Volume 23, Issue 1, pp 31–52 | Cite as

A Hilbert-Style Axiomatisation for Equational Hybrid Logic

  • Luís S. Barbosa
  • Manuel A. MartinsEmail author
  • Marta Carreteiro


This paper introduces an axiomatisation for equational hybrid logic based on previous axiomatizations and natural deduction systems for propositional and first-order hybrid logic. Its soundness and completeness is discussed. This work is part of a broader research project on the development a general proof calculus for hybrid logics.


Equational hybrid logic Hilbert axiomatisation Completeness 



The authors express their gratitude to the anonymous reviewer for useful comments and corrections.


  1. Areces, C., Blackburn, P., & Marx, M. (2001). Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic, 66(3), 977–1010.CrossRefGoogle Scholar
  2. Blackburn, P. (2000). Representation, reasoning, and relational structures: A hybrid logic manifesto. Logic Journal of IGPL, 8(3), 339–365.CrossRefGoogle Scholar
  3. Blackburn, P., & ten Cate, B. D. (2006). Pure extensions, proof rules, and hybrid axiomatics. Studia Logica, 84(2), 277–322.CrossRefGoogle Scholar
  4. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.Google Scholar
  5. Braüner, T. (2011). Hybrid logic and its proof theory. Berlin: Springer.CrossRefGoogle Scholar
  6. Braüner, T. (2005). Natural deduction for first-order hybrid logic. Journal of Logic, Language and Information, 14, 173.CrossRefGoogle Scholar
  7. Braüner, T., & de Paiva, V. (2006). Intuitionistic hybrid logic. Journal of Applied Logic, 4(3), 231–255.CrossRefGoogle Scholar
  8. Fitting, M., & Mendelsohn, R. L. (1998). First-order modal logic. Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. Garson, J. W. (1984). Quantification in modal logic. In D. M. Gabbay & F. Guenthner (Eds.) Handbook of philosophical logic: Volume III: Extensions of classical logic (pp. 249–307). Dordrecht: Reidel.Google Scholar
  10. Goranko, V., & Vakarelov, D. (1998). Modal logic and universal algebra i: Modal axiomatizations of structures. Advances in Modal Logic, 247–274.Google Scholar
  11. Grätzer, G. (1979). Universal algebra (2nd ed.). Berlin: Springer.Google Scholar
  12. Indrzejczak, A. (2007). Modal hybrid logic. Logic and Logical Philosophy, 16, 147–257.CrossRefGoogle Scholar
  13. Madeira, A., Faria, J. M., Martins, M. A., & Barbosa, L. S. (2011). Hybrid specification of reactive systems: An institutional approach. In 9th international conference on software engineering and formal methods (SEFM’11). Springer Lecture Notes Computer Science 7041, pp. 250–259.Google Scholar
  14. Manzano, M., Martins, M.A., & Huertas, A. (2012). Equational hybrid type theory. In T. Bolander, T. Braüner, S. Ghilardi & L. Moss (Eds.) In proceedings of 9th advances in modal logic (AiML’12) short presentations (pp. 37–41). Copenhagen.Google Scholar
  15. Martins, M. A., Madeira, A., & Barbosa, L. S. (2012). Towards a semantics for infinitary equational hybrid logic. In T. Bolander, T. Braüner, S., Ghilardi & L. Moss (Eds.) In proceedings of 9th advances in modal logic (AiML’12) short presentations (pp. 42–46). Copenhagen.Google Scholar
  16. Martins, M. A., Madeira, A., Diaconescu, R., & Barbosa, L. S. (2011). Hybridization of institutions. In Fourth international conference on algebra and Coalgebra in computer science (CALCO’11), pp. 283–297. Springer Lecture Notes in Computer Science (6859).Google Scholar
  17. Tzanis, E. (2005). Algebraizing hybrid logic. Master’s thesis, Faculty Faculty of Science Institute/dept. FNWI/FGw: Institute for Logic, Language and Computation (ILLC).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luís S. Barbosa
    • 1
  • Manuel A. Martins
    • 2
    Email author
  • Marta Carreteiro
    • 3
  1. 1.HASLab, High Assurance Software LaboratoryINESC TEC & Universidade do MinhoBragaPortugal
  2. 2.CIDMA, Center for R&D in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal
  3. 3.SAP, Nearshore Center PortugalLisboaPortugal

Personalised recommendations