Journal of Logic, Language and Information

, Volume 22, Issue 3, pp 249–267 | Cite as

On the Origin of Ambiguity in Efficient Communication

Article

Abstract

This article studies the emergence of ambiguity in communication through the concept of logical irreversibility and within the framework of Shannon’s information theory. This leads us to a precise and general expression of the intuition behind Zipf’s vocabulary balance in terms of a symmetry equation between the complexities of the coding and the decoding processes that imposes an unavoidable amount of logical uncertainty in natural communication. Accordingly, the emergence of irreversible computations is required if the complexities of the coding and the decoding processes are balanced in a symmetric scenario, which means that the emergence of ambiguous codes is a necessary condition for natural communication to succeed.

Keywords

Ambiguity Logical (ir)reversibility Communicative efficiency Shannon’s entropy 

References

  1. Ash, R. B. (1990). Information theory. New York: Dover Publications.Google Scholar
  2. Bennett, C. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525–532.CrossRefGoogle Scholar
  3. Bennett, C. (2008). Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Studies In History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 34(3), 501–510.CrossRefGoogle Scholar
  4. Bennett, C., & Landauer, R. (1985). The fundamental physical limits of computation. Scientific American, 253(1), 38–46.CrossRefGoogle Scholar
  5. Chomsky, N. (2008). On phases. In R. Freidin, C. P. Otero, & M. L. Zubizarreta (Eds.), Foundational issues in linguistic theory: Essays in honor of Jean-Roger Vergnaud. Cambridge, MA: The MIT Press.Google Scholar
  6. Corominas-Murtra, B., Fortuny, J., & Solé, R. V. (2011). Emergence of Zipf’s law in the evolution of communication. Physical Review E, 83(3), 036–115.CrossRefGoogle Scholar
  7. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.CrossRefGoogle Scholar
  8. Ferrer-i-Cancho, R., & Solé, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Science, 100, 788–791.CrossRefGoogle Scholar
  9. Harremoës, P., & Topsœ, F. (2001). Maximum entropy fundamentals. Entropy, 3, 191–226.CrossRefGoogle Scholar
  10. Ladyman, J., Presnell, S., Short, A., & Groisman, B. (2007). The connection between logical and thermodynamic irreversibility. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 38(1), 58–79.CrossRefGoogle Scholar
  11. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.CrossRefGoogle Scholar
  12. Lewis, H. R., & Papadimitriou, C. H. (1997). Elements of the theory of computation. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  13. Montague, R. (1974). Formal philosophy: Selected papers of Richard Montague, edited and with an introduction by Richmond Thomason. New Haven: Yale University Press.Google Scholar
  14. Toffoli, T. (1980). Reversible computing. In J. de Bakker & J. van Leeuwen (Eds.), Automata, languages and programming. Berlin: Springer.Google Scholar
  15. Wang, E., & Steels, L. (2008). Self-interested agents can bootstrap symbolic communication if they punish cheaters. In A. D. M. Smith, K. Smith, & R. Ferrer-i-Cancho (Eds.), The evolution of language: Proceedings of the 7th international conference (EVOLANG7). Singapore: World Scientific Publishing.Google Scholar
  16. Wittgenstein, L. (1922/1961). Tractatus logico-philosophicus. London: Routledge.Google Scholar
  17. Zipf, G. (1965). Human behavior and the principle of least effort: An introduction to human ecology. New York: Hafner Publishing.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Catalan Philology, Facultat de FilologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Section for Science of Complex SystemsMedical University of ViennaViennaAustria
  3. 3.ICREA-Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations