Skip to main content
Log in

Investigations into a left-structural right-substructural sequent calculus

  • Original Article
  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

We study a multiple-succedent sequent calculus with both of the structural rules Left Weakening and Left Contraction but neither of their counterparts on the right, for possible application to the treatment of multiplicative disjunction (fission, ‘cotensor’, par) against the background of intuitionistic logic. We find that, as Hirokawa dramatically showed in a 1996 paper with respect to the rules for implication, the rules for this connective render derivable some new structural rules, even though, unlike the rules for implication, these rules are what we call ipsilateral: applying such a rule does not make any (sub)formula change sides—from the left to the right of the sequent separator or vice versa. Some possibilities for a semantic characterization of the resulting logic are also explored. The paper concludes with three open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allwein G., Dunn J.M. (1993). Kripke models for linear logic. Journal of Symbolic Logic 58, 514–545

    Article  Google Scholar 

  • Avron A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science 57, 161–187

    Article  Google Scholar 

  • Battilotti G., Sambin G. (1999). Basic logic and the cube of its extensions. In Cantini A., et al. (eds) Logic and foundations of Mathematics. Dordrecht, Kluwer, pp. 165–186

    Google Scholar 

  • Bierman G.M. (1996). A note on full intuitionistic linear logic. Annals of Pure and Applied Logic 79, 281–287

    Article  Google Scholar 

  • Blamey S. (2002). Partial Logic. In: Gabbay D.M., Guenthner F.(eds) Handbook of philosophical logic 2nd ed. Vol. 5. Dordrecht, Kluwer, pp. 261–353

    Google Scholar 

  • Chellas B. (1980). Modal logic: An Introduction. Cambridge, Cambridge University Press

    Google Scholar 

  • Došen K. (1989). Sequent-systems and groupoid models. II. Studia Logica 48, 41–65

    Article  Google Scholar 

  • Dunn J.M. (1986). Relevance logic and entailment. In: Gabbay D., Guenthner F.(eds) Handbook of philosophical logic III: Alternatives to classical logic. Dordrecht, Reidel, pp. 117-224

    Google Scholar 

  • Fine K. (1974). Models for entailment. Journal of Philosophical Logic 3, 347–372

    Article  Google Scholar 

  • Gentzen, G. (1934). Untersuchungen über das Logische Schliessen. Math. Zeitschrift, 39, 176–210, 405–431 (English translation in The collected papers of Gerhard Gentzen, ed. M. Szabo, North-Holland, Amsterdam 1969).

  • Girard J.-Y. (1987). Linear Logic. Theoretical Computer Science 50, 1–102

    Article  Google Scholar 

  • Goldblatt R. (1993). Mathematics of Modality. Stanford, California: Center for the Study of Language and Information

  • Hirokawa, S. (1996). Right weakening and right contraction in LK. In M. E. Houle & P. Eades (Eds.), CATS ’96 (= Australian Computer Science Communications Vol. 18, No. 3, (pp. 167–174).

  • Humberstone L. (1988). Operational semantics for positive R. Notre Dame Journal of Formal Logic 29, 61–80

    Article  Google Scholar 

  • Humberstone L. (1997). Singulary extensional connectives: A closer ook. Journal of Philosophical Logic 26, 341–356

    Article  Google Scholar 

  • Humberstone L. (2000). Parts and partitions. Theoria 66, 41–82

    Article  Google Scholar 

  • Humberstone L. (2006). Identical twins, Deduction theorems, and pattern functions: Exploring the implicative BCSK Fragment of S5. Journal of Philosophical Logic 35, 435–487

    Article  Google Scholar 

  • Hyland M., de Paiva V. (1993). Full intuitionistic linear logic (extended abstract). Annals of Pure and Applied Logic 64, 273–291

    Article  Google Scholar 

  • Ishihara H. (2000). A canonical model construction for substructural logics. Journal of Universal Computer Science 6, 177–168

    Google Scholar 

  • Kashima R. (1997). Contraction-elimination for implicational logics. Annals of Pure and Applied Logic 84, 17–39

    Article  Google Scholar 

  • MacCaull W. (1996). Kripke semantics for logics with BCK implication. Bulletin of the Section of Logic 25, 41–51

    Google Scholar 

  • Ono H., Komori Y. (1985). Logics without the contraction rule. Journal of Symbolic Logic 50, 169–201

    Article  Google Scholar 

  • Paoli F. (2002). Substructural Logics: A Primer. Dordrecht, Kluwer

    Google Scholar 

  • Rautenberg W. (1981). 2-Element Matrices. Studia Logica 40, 315–353

    Article  Google Scholar 

  • Rautenberg W. (1989). A calculus for the common rules of \({\wedge}\) and \({\vee}\) . Studia Logica 48, 531–537

    Article  Google Scholar 

  • Restall G. (2000). An Introduction to Substructural Logics. London, Routledge

    Google Scholar 

  • Rogerson S. (2003). Investigations into properties of structural rules on the right (Abstract). Bulletin of Symbolic Logic 9: 263

    Google Scholar 

  • Schotch P.K., Jennings R.E. (1979). Modal logic and the theory of modal aggregation. Philosophia 9, 265–280

    Article  Google Scholar 

  • Shoesmith D.J., Smiley T.J. (1971). Deducibility and many-valuedness. Journal of Symbolic Logic 36, 610–622

    Article  Google Scholar 

  • Shoesmith D.J., Smiley T.J. (1978). Multiple-Conclusion Logic. Cambridge, Cambridge University Press

    Google Scholar 

  • Surarso B., Ono H. (1996). Cut elimination in noncommutative substructural logics. Reports on Mathematical Logic 30, 13–29

    Google Scholar 

  • Troelstra, A. S. (1992). Lectures on Linear Logic. CSLI Lecture Notes #29, Stanford University.

  • Urquhart A. (1972). Semantics for relevant logics. Journal of Symbolic Logic 37, 159–169

    Article  Google Scholar 

  • Wójcicki R. (1974). Note on deducibility and many-valuedness. Journal of Symbolic Logic 39, 563–566

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Humberstone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humberstone, L. Investigations into a left-structural right-substructural sequent calculus. JoLLI 16, 141–171 (2007). https://doi.org/10.1007/s10849-006-9026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-006-9026-x

Keywords

Navigation