Skip to main content
Log in

Role of SiO2 in TiO2/SiO2 photocatalyst for hydrogen peroxide gas generation from air humidity via photocatalysis

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This work aims to study the production of hydrogen peroxide gas (H2O2) through photocatalysis. It consists of two main parts. In the first part, we explore the optimal conditions for synthesizing H2O2 gas from humidity using a gas system photoreactor. Through experimentation, we discovered that the fabricated photoreactor, equipped with three series of coated photocatalyst-supporting plates, can synthesize H2O2 gas up to 3 ppmv. The photoreactor incorporates key components, including a photocatalyst material, UV light source, ventilation fan, and air filter. The identified optimal conditions included a relative humidity of 60‒65% RH and an air flow rate of 12.0 m/s. The TiO2/1%SiO2 photocatalyst, composed of SiO2 particles smaller than 63 μm, yielded the most favorable results. The second part focused on studying the role of SiO2 in TiO2/SiO2. We observed that modifying the TiO2 morphology with SiO2 created a pore structure on the surface. This structural modification leads to the formation of Ti‒O‒Si bonds, which facilitate electron and hole trapping on the photocatalyst surface. Furthermore, the presence of hydroxyl groups on the surface enhanced the attraction of reactant molecules. XRD results reveal a mixed-phase structure of TiO2 (anatase‒rutile)/SiO2 amorphous, contributing to improved electron and hole pathways within the photocatalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baik, K.Y., Jo, H., Ki, S.H., Kwon, G.C., Cho, G.: Synergistic effect of hydrogen peroxide and cold atmospheric pressure plasma-jet for microbial disinfection. Appl. Sci. 13, 3324 (2023). https://doi.org/10.3390/app13053324

    Article  CAS  Google Scholar 

  2. Finnegan, M., Linley, E., Denyer, S.P., McDonnell, G., Simons, C., Maillard, J.Y.: Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J. Antimicrob. Chemother. 65, 2108–2115 (2010). https://doi.org/10.1093/jac/dkq308

    Article  CAS  PubMed  Google Scholar 

  3. McDonell, G.: The use of hydrogen peroxide for disinfection and sterilization applications. Chem. Funct. Groups (2014). https://doi.org/10.1002/9780470682531.pat0885

    Article  Google Scholar 

  4. Hou, H., Zeng, X., Zhang, X.: Production of hydrogen peroxide through photocatalytic processes: a critical review of recent. Angew. Chem. Int. Ed. 59, 17356–17376 (2020). https://doi.org/10.1002/anie.201911609

    Article  CAS  Google Scholar 

  5. Burek, B.O., Bahnemann, D.W., Bloh, J.Z.: Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 9, 25–37 (2019). https://doi.org/10.1021/acscatal.8b03638

    Article  CAS  Google Scholar 

  6. Wang, L., Cao, S., Guo, K., Wu, Z., Ma, Z., Piao, L.: Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin. J. Catal. 40, 470–475 (2019). https://doi.org/10.1016/S1872-2067(19)63274-2

    Article  CAS  Google Scholar 

  7. Sukkasem, T., Nuchitprasittichai, A., Janphuang, P., Junpirom, S.: TiO2/SiO2 coated 310S stainless steel for hydrogen peroxide generation via photocatalytic reaction. Curr. Appli Sci. Tech. 22, 3 (2022). https://doi.org/10.55003/cast.2022.03.22.001

    Article  Google Scholar 

  8. Wang, L., Zhang, J., Zhang, Y., Yu, H., Qu, Y., Yu, J.: Inorganic metal-oxide photocatalyst for H2O2 production. Small 18, 2104561 (2022). https://doi.org/10.1002/smll.202104561

    Article  CAS  Google Scholar 

  9. He, B., Luo, C., Wang, Z., Zhang, L., Yu, J.: Synergistic enhancement of solar H2O2 and HCOOH production over TiO2 by dual co-catalyst loading in a tri-phase system. Appl. Cat B: Envi 323, 122200 (2023). https://doi.org/10.1016/j.apcatb.2022.122200

    Article  CAS  Google Scholar 

  10. Nabih, S., Shalan, A.E., Serea, E.S.A., Goda, M.A., Sanad, M.F.: Photocatalytic performance of TiO2@SiO2 nanocomposites for the treatment of different organic dyes. J. Mat. Sci. Mater. Electron. 30, 9623–9633 (2019). https://doi.org/10.1007/s10854-019-01296-y

    Article  CAS  Google Scholar 

  11. Bellardita, M., Addamo, M., Paola, A.D., Marci, G., Palmisano, L., Cassar, L., Borsa, M.: Photocatalytic activity of TiO2/SiO2 systems. J. Hazard. Mater. 174, 707–713 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.108

    Article  CAS  PubMed  Google Scholar 

  12. Klondon, R.: Removal of air pollutants by photocatalytic process using TiO2/SiO2 coated Dan Kwian pottery. SUTIR 48–49. (2013). http://sutir.sut.ac.th:8080/jspui/handle/123456789/4751

  13. Joseph, C.G., Taufiq-Yap, Y.H., Musta, B., Sarjadi, M.S., Elilarasi, L.: Application of plasmonic metal nanoparticles in TiO2–SiO2 composite as an efficient solar-activated photocatalyst: a review paper. Front. Chem. 8, 568063 (2021). https://doi.org/10.3389/fchem.2020.568063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panayotov, D., Yates, J.T.: Bifunctional hydrogen bonding of 2-chloroethyl ethyl sulfide on TiO2–SiO2 powders. J. Phys. Chem. B 107, 38 (2003). https://doi.org/10.1021/jp0304273

    Article  CAS  Google Scholar 

  15. Balachandran, K., Venckatesh, R., Sivaraj, R., Rajiv, P.: TiO2 nanoparticles versus TiO2–SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim. Acta Mol. Biomol. Spectrosc. 128, 468–474 (2014). https://doi.org/10.1016/j.saa.2014.02.127

    Article  CAS  Google Scholar 

  16. Kibombo, H.S., Peng, R., Rasalingam, S., Koodali, R.T.: Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catal. Sci. Technol. 2, 1737–1766 (2012). https://doi.org/10.1039/C2CY20247F

    Article  CAS  Google Scholar 

  17. Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., Kenneth, J.D.M.: Effect of silica additive on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 84, 1591–1596 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00882.x

    Article  Google Scholar 

  18. Ji, H., Du, P., Zhao, D., Li, S., Sun, F., Duin, E.C., Liu, W.: 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: catalytic hot spots at the rutile–anatase–titanate interfaces. Appl. Catal. B: Environ. 263, 118357 (2020). https://doi.org/10.1016/j.apcatb.2019.118357

    Article  CAS  Google Scholar 

  19. Hurum, D.C., Agrios, A.G., Gray, K.A.: Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545–4549 (2003). https://doi.org/10.1021/jp0273934

    Article  CAS  Google Scholar 

  20. Liu, X., Ji, H., Li, S., Liu, W.: Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light. Chemosphere. 233, 198–206 (2019). https://doi.org/10.1016/j.chemosphere.2019.05.229

    Article  CAS  PubMed  Google Scholar 

  21. Ji, H., Liu, W., Sun, F., Huang, T., Chen, L., Liu, Y., Qi, J., Xie, C., Zhao, D.: Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: insights into reactive sites and energy evolution. Chem. Eng. J. 419, 129605 (2021). https://doi.org/10.1016/j.cej.2021.129605

    Article  CAS  Google Scholar 

  22. Panarelli, E.G., Livraghi, S., Maurelli, S., Polliotto, V., Chiesa, M., Giamello, E.: Role of surface water molecules in stabilizing trapped hole centres in titanium dioxide (anatase) as monitored by electron paramagnetic resonance. J. Photochem. Photobiol. A: Chem. (2016). https://doi.org/10.1016/j.jphotochem.2016.02.015

    Article  Google Scholar 

  23. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W.: Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014). https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  24. Masolo, E., Senes, N., Pellicer, E., Baró, M.D., Enzo, S., Pilo, M.I., Mulas, G., Garroni, S.: Evaluation of the anatase/rutile phase composition influence on the photocatalytic performances of mesoporous TiO2 powders. Int. J. Hydro Ener. 40(42), 14483–14491 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.180

    Article  CAS  Google Scholar 

  25. Xu, F., Xiao, W., Cheng, B., Yu, J.: Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy 39(28), 15394–15402 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.166

    Article  CAS  Google Scholar 

  26. Luo, Z., Poyraz, A.S., Kuo, C.H., Miao, R., Meng, Y., Chen, S.Y., Jiang, T., Wenos, C., Suib, S.L.: Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 27(1), 6–17 (2015). https://doi.org/10.1021/cm5035112

    Article  CAS  Google Scholar 

  27. Yaemsunthorn, K., Kobielusz, M., Macyk, W.: TiO2 with tunable anatase-to-rutile nanoparticles ratios: how does the photoactivity depend on the phase composition and the nature of photocatalytic reaction? ACS Appl. Nano Mater. 4(1), 633–643 (2021). https://doi.org/10.1021/acsanm.0c02932

    Article  CAS  Google Scholar 

  28. Li, Y., Zhang, Y., Zhang, C., Deng, L., Li, S., Zhuang, C.: Self-healing of oxygen vacancies and phase transition-induced built-in electric field regulate H2 and H2O2 production. J. Colloid Interface Sci. 655, 12–22 (2024). https://doi.org/10.1016/j.jcis.2023.10.090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Technopolis, Suranaree University of Technology. The authors also gratefully acknowledge the support provided by the Synchrotron Light Research Institute (SLRI) and the Center of Excellence in Biomechanics Medicine.

Author information

Authors and Affiliations

Authors

Contributions

TS; writing—original draft, visualization, conceptualization, data curation, formal analysis, methodology. NP; experimental section, formal analysis. PK; experimental section, formal analysis. SP; experimental section, formal analysis. AN; writing—review and editing. SJ; writing—review and editing, project administration. PJ; resources, methodology.

Corresponding author

Correspondence to Supunnee Junpirom.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukkasem, T., Nuchitprasittichai, A., Junpirom, S. et al. Role of SiO2 in TiO2/SiO2 photocatalyst for hydrogen peroxide gas generation from air humidity via photocatalysis. J Incl Phenom Macrocycl Chem (2023). https://doi.org/10.1007/s10847-023-01211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10847-023-01211-3

Keywords

Navigation