Skip to main content
Log in

RETRACTED ARTICLE: Macroscopic supramolecular self-assembly detection based on HALCON machine vision

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

This article was retracted on 23 April 2024

This article has been updated

Abstract

Macroscopic supramolecular self-assembly (MSSA) has emerged as a new area of research in the field of supramolecular chemistry. The construction of macroscopic supramolecular structures using interfacial assembly by modifying functional groups on the surface of macromolecules and exploiting the weak interactions between surface functional groups is gaining more and more attention. With the advancement of gel technology, significant progress has been made in MSSA. However, MSSA still faces challenges such as low detection efficiency and accuracy. In this paper, a MSSA detection technique based on HALCON machine vision is designed. The technique first locates the hydrogel block (HB) by shape-based template matching and then uses machine vision techniques to detect whether the HBs are assembled. Finally, through the self-assembly judgment and detection of 500 groups of HBs, the results show that the technology can efficiently and accurately complete the MSSA detection function, which is of great significance for the development of supramolecular chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Change history

References

  1. Rowan, S.J., Cantrill, S.J., Cousins, G.R., Sanders, J.K., Stoddart, J.F.: Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41(6), 898–952 (2002). https://doi.org/10.1002/1521-3773(20020315)41:6%3c898::AID-ANIE898%3e3.0.CO;2-E

    Article  Google Scholar 

  2. Varshey, D.B., Sander, J.R., Friščić, T., Macgillivray, L.R.: Supramolecular Interactions. In: Gale, P.A., Steed, J.W. (eds.) Supramolecular Chemistry: from Molecules to Nanomaterials, pp. 1–16. Wiley, New York (2012). https://doi.org/10.1002/9780470661345.smc003

    Chapter  Google Scholar 

  3. De Greef, T.F., Smulders, M.M., Wolffs, M., Schenning, A.P., Sijbesma, R.P., Meijer, E.: Supramolecular polymerization. Chem. Rev. 109(11), 5687–5754 (2009). https://doi.org/10.1021/cr900181u

    Article  CAS  PubMed  Google Scholar 

  4. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564), 2418–2421 (2002). https://doi.org/10.1126/science.1070821

    Article  CAS  PubMed  Google Scholar 

  5. Amabilino, D.B., Smith, D.K., Steed, J.W.: Supramolecular materials. Chem. Soc. Rev. 46(9), 2404–2420 (2017). https://doi.org/10.1039/c7cs00163k

    Article  CAS  PubMed  Google Scholar 

  6. Webber, M.J., Pashuck, E.T.: (Macro) molecular self-assembly for hydrogel drug delivery. Adv. Drug Deliv. Rev. 172, 275–295 (2021). https://doi.org/10.1016/j.addr.2021.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saaem, I., Labean, T.H.: Overview of DNA origami for molecular self-assembly. Wiley Interdiscipl. Rev. Nanomed. Nanobiotechnol. 5(2), 150–162 (2013). https://doi.org/10.1002/wnan.1204

    Article  CAS  Google Scholar 

  8. Drain, C.M., Goldberg, I., Sylvain, I., Falber, A.: Synthesis and applications of supramolecular porphyrinic materials. Funct. Mol. Nanostruct. (2005). https://doi.org/10.1007/b98166

    Article  Google Scholar 

  9. Li, J., Xu, Z., Xiao, Y., Gao, G., Chen, J., Yin, J., Fu, J.: Macroscopic assembly of oppositely charged polyelectrolyte hydrogels. J. Mater. Chem. B 6(2), 257–264 (2018). https://doi.org/10.1039/c7tb02904g

    Article  CAS  PubMed  Google Scholar 

  10. Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., Yamaguchi, H.: Macroscopic self-assembly through molecular recognition. Nat. Chem. 3(1), 34–37 (2011). https://doi.org/10.1038/nchem.893

    Article  CAS  PubMed  Google Scholar 

  11. Qi, H., Ghodousi, M., Du, Y., Grun, C., Bae, H., Yin, P., Khademhosseini, A.: DNA-directed self-assembly of shape-controlled hydrogels. Nat. Commun. 4, 10 (2013). https://doi.org/10.1038/ncomms3275

    Article  CAS  Google Scholar 

  12. Ji, X.F., Wu, R.T., Long, L.L., Ke, X.S., Guo, C.X., Ghang, Y.J., Lynch, V.M., et al.: Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv. Mater. 30(11), 6 (2018). https://doi.org/10.1002/adma.201705480

    Article  CAS  Google Scholar 

  13. Xiao, M., Xian, Y.M., Shi, F.: Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition. Angew. Chem. Int. Edit. 54(31), 8952–8956 (2015). https://doi.org/10.1002/anie.201502349

    Article  CAS  Google Scholar 

  14. Li, Q., Zhang, Y.W., Wang, C.F., Weitz, D.A., Chen, S.: Versatile hydrogel ensembles with macroscopic multidimensions. Adv. Mater. 30(52), 9 (2018). https://doi.org/10.1002/adma.201803475

    Article  CAS  Google Scholar 

  15. Ju, G.N., Guo, F.L., Zhang, Q., Kuehne, A.J.C., Cui, S.X., Cheng, M.J., Shi, F.: Self-correction strategy for precise, massive, and parallel macroscopic supramolecular assembly. Adv. Mater. 29(37), 6 (2017). https://doi.org/10.1002/adma.201702444

    Article  CAS  Google Scholar 

  16. Hou, H.Y., Wu, F.: Automated defect inspection algorithm for semiconductor-packaged chips. Int. J. Ind. Eng. Theory Appl. Pract. 27(5), 731–746 (2020). https://doi.org/10.23055/ijietap.2020.27.5.6161

    Article  Google Scholar 

  17. Yadav, A.R., Anand, R.S., Dewal, M., Gupta, S.: Gaussian image pyramid based texture features for classification of microscopic images of hardwood species. Optik 126(24), 5570–5578 (2015). https://doi.org/10.1016/j.ijleo.2015.09.030

    Article  Google Scholar 

Download references

Funding

This work was supported by Foundation Strengthening Plan Project (2021ZD029).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception: YJZ, FSH; experimental platform construction: JDH, FSH, YBL, CY; data collection: FSH, YBL; interpretation of result: ZMJ, JDH; draft manuscript preparation: YJZ, ZMJ. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhiming Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10847-024-01244-2"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., He, J., Huang, F. et al. RETRACTED ARTICLE: Macroscopic supramolecular self-assembly detection based on HALCON machine vision. J Incl Phenom Macrocycl Chem 103, 407–419 (2023). https://doi.org/10.1007/s10847-023-01205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01205-1

Keywords

Navigation