Skip to main content
Log in

Nanoporous carbon, its pharmaceutical applications and metal organic frameworks

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Nanoporous carbon materials have always presented a special interest due to their properties, which include adsorption (especially of gases), catalyst activity, fluorescence, and luminescence. Their porosity leads to a high surface area, making them suited for assisting processes, such as synthesis (especially carboxylation and electrolytic reduction), catalysis (particularly electrocatalysts and photocatalysis), and separation. Considering these features, carbon nanotubes, graphene oxide, and graphene quantum dots have been extensively investigated for pharmaceutical applications. Coming from either organic, inorganic or synthetic precursors, the nanoporous carbon composites are of great value as adsorbent for the removal of various pollutants. Apart from the removal of pollutants, nanopores serve to separate single stranded and double stranded DNA in solution and rapid DNA sequencing. While the size of the pores depends on the method used for preparation, from a usage standpoint, the nanopores are micropores (\(< \! 2 ~ \text {nm}\)), mesopores (\(2 \!- \! 50 ~\text {nm}\)) and macropores (\(> \! 50 ~ \text {nm}\)). The methods of investigation related with nanoporous carbon materials often include X ray diffraction, scanning electron microscopy, fourier transform infrared spectroscopy, transmission electron microscopy, X ray photoelectron spectroscopy, thermogravimetric analysis and X ray powder diffraction. This review summarizes the most recent studies in developing nanoporous carbon materials for various pharmacautical applications including bio-sensing, drug delivery, tissue engineering, biomedicine, gene transfection or cancer therapy. New porous carbon materials, including metal organic frameworks, carbon dots and nanotubes, have been detailed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Cooney, D.O.: Activated charcoal: antidotal and other medical uses. Marcel Dekker, New York (1980)

    Google Scholar 

  2. Wrench, J.: Origin, properties and uses of activated carbon. J. Oil Fat Ind. 8(12), 441–453 (1931). https://doi.org/10.1007/BF02574469

    Article  Google Scholar 

  3. Baker, F.S., Miller, C.E., Repik, E.D.: Kirk-Othmer encyclopedia of chemical technology, vol. 4. Wiley, New York (1992)

    Google Scholar 

  4. Debye, P., Scherrer, P.: X-ray interference produced by irregularly oriented particles. III. Constitution of graphite and amorphous carbon. Phys. Z. 18, 291–301 (1917)

    CAS  Google Scholar 

  5. Yuan, W., Feng, Y., Xie, A., Zhang, X., Huang, F., Li, S., Zhang, X., Shen, Y.: Nitrogen-doped nanoporous carbon derived from waste pomelo peel as a metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 8, 8704–8711 (2016). https://doi.org/10.1039/C6NR00764C

    Article  CAS  PubMed  Google Scholar 

  6. Venkateshaiah, A., Cheong, J.Y., Shin, S.H., Akshaykumar, K.P., Yun, T.G., Bae, J., Waclawek, S., Cerník, M., Agarwal, S., Greiner, A., Padil, V.V.T., Kim, I.D., Varma, R.S.: Recycling non-food-grade tree gum wastes into nanoporous carbon for sustainable energy harvesting. Green Chem. 22, 1198–1208 (2020). https://doi.org/10.1039/C9GC04310A

    Article  CAS  Google Scholar 

  7. Li, Z., Xu, J., Sun, D., Lin, T., Huang, F.: Nanoporous carbon foam for water and air purification. ACS Appl. Nano Mater. 3(2), 1564–1570 (2020). https://doi.org/10.1021/acsanm.9b02347

    Article  CAS  Google Scholar 

  8. Joseph, S., Saianand, G., Benzigar, M.R., Ramadass, K., Singh, G., Gopalan, A.I., Yang, J.H., Mori, T., Al-Muhtaseb, A.H., Yi, J., Vinu, A.: Recent advances in functionalized nanoporous carbons derived from waste resources and their applications in energy and environment. Adv. Sustain. Syst. 5(1), 2000169 (2021). https://doi.org/10.1002/adsu.202000169

    Article  CAS  Google Scholar 

  9. Le, T.X.H., Cowan, M.G., Drobek, M., Bechelany, M., Julbe, A., Cretin, M.: Fe-nanoporous carbon derived from mil-53(Fe): a heterogeneous catalyst for mineralization of organic pollutants. Nanomaterials 9(4), 641 (2019). https://doi.org/10.3390/nano9040641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon, J., Moon, S., Ha, S., Lim, H.K., Jin, H.J., Yun, Y.S.: Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal anode. J. Energy Chem. 74, 121–127 (2022). https://doi.org/10.1016/j.jechem.2022.06.048

    Article  CAS  Google Scholar 

  11. Lim, J.S., Kim, J.H., Woo, J., Baek, D.S., Ihm, K., Shin, T.J., Sa, Y.J., Joo, S.H.: Designing highly active nanoporous carbon \(\text{ H}_{2}\text{O}_{2}\) production electrocatalysts through active site identification. Chem 7(11), 3114–3130 (2021). https://doi.org/10.1016/j.chempr.2021.08.007

    Article  CAS  Google Scholar 

  12. Aleksandrzak, M., Baranowska, D., Kedzierski, T., Sielicki, K., Zhang, S., Biegun, M., Mijowska, E.: Superior synergy of \(\text{g }-\text{C}_{3}\text{N}_{4}/\text{Cd }\) compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Appl. Catal. B 257, 117906 (2019). https://doi.org/10.1016/j.apcatb.2019.117906

    Article  CAS  Google Scholar 

  13. Zahed, M.A., Salehi, S., Madadi, R., Hejabi, F.: Biochar as a sustainable product for remediation of petroleum contaminated soil. Curr. Res. Green Sustain. Chem. 4, 100055 (2021). https://doi.org/10.1016/j.crgsc.2021.100055

    Article  CAS  Google Scholar 

  14. Cagnon, B., Secula, M., Bayazit, S.: In: Bartoli, M., Frediani, M., Rosi, L. (eds.) Carbon-based material for environmental protection and remediation. IntechOpen (2021). https://doi.org/10.5772/intechopen.91355. https://EconPapers.repec.org/RePEc:ito:pchaps:192598

  15. Yang, Z., Dang, F., Zhang, C., Sun, S., Zhao, W., Li, X., Liu, Y., Chen, X.: Harvesting low-grade heat via thermal-induced electric double layer redistribution of nanoporous graphene films. Langmuir 35(24), 7713–7719 (2019). https://doi.org/10.1021/acs.langmuir.9b00646

    Article  CAS  PubMed  Google Scholar 

  16. Yan, B., Huang, H., Qin, X., Xiu, S., Choi, J., Ko, D., Chen, T., Zhang, W., Quan, B., Diao, G., Jin, X., Piao, Y.: Facile self-template synthesis of a nitrogen-rich nanoporous carbon wire and its application for energy storage devices. ACS Appl. Energy Mater. 4(12), 13735–13747 (2021). https://doi.org/10.1021/acsaem.1c02463

    Article  CAS  Google Scholar 

  17. Jiang, Y., Mei, C., Zhang, Z., Dong, Z.: Immobilizing \(\text{CsPbBr}_{3}\) perovskite nanocrystals on nanoporous carbon powder for visible-light-driven \(\text{CO}_{2}\) photoreduction. Dalton Trans. 50, 16711–16719 (2021). https://doi.org/10.1039/D1DT03099J

    Article  CAS  PubMed  Google Scholar 

  18. Ramesh, A., Jeyavelan, M., Rajju Balan, J.A., Srivastava, O., Leo Hudson, M.S.: Supercapacitor and room temperature H, \(\text{CO}_{2}\) and \(\text{CH}_{4}\) gas storage characteristics of commercial nanoporous activated carbon. J. Phys. Chem. Solids 152, 109969 (2021). https://doi.org/10.1016/j.jpcs.2021.109969

    Article  CAS  Google Scholar 

  19. Smuthkochorn, A., Katunyoo, N., Kaewtrakulchai, N., Atong, D., Soongprasit, K., Eiad-ua, A.: Nanoporous carbon from cattial leaves for carbon dioxide capture. Mater. Today Proc. 17, 1240–1248 (2019). The First Materials Research Society of Thailand International Conference, October 31–November 3, 2017 https://doi.org/10.1016/j.matpr.2019.06.012. https://www.sciencedirect.com/science/article/pii/S2214785319312441

  20. Casanova, A., Raymundo-Piñero, E., Ania, C.M.C.O., Gomis-Berenguer, A.: Synthetic strategies for the preparation of nanoporous carbons. In: Advanced materials for energy production, conversion and storage. CRC Press (2022). https://hal.science/hal-03884293

  21. Hu, C., Dai, Q., Dai, L.: Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Rep. Phys. Sci. 2(2), 100328 (2021). https://doi.org/10.1016/j.xcrp.2021.100328

    Article  CAS  Google Scholar 

  22. Martínez, A.A., Gasnier, A., Gennari, F.C.: From iron to copper: the effect of transition metal catalysts on the hydrogen storage properties of nanoconfined libh4 in a graphene-rich n-doped matrix. Molecules 27(9), 2921 (2022). https://doi.org/10.3390/molecules27092921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harmanli, I.: Towards catalytic activation of nitrogen in ionic liquid/nanoporous carbon interfaces for electrochemical ammonia synthesis. Doctoralthesis, Universität Potsdam (2020). https://doi.org/10.25932/publishup-48359

  24. Fu, Y., Li, K., Batmunkh, M., Yu, H., Donne, S., Jia, B., Ma, T.: Unsaturated p-metal-based metal-organic frameworks for selective nitrogen reduction under ambient conditions. ACS Appl. Mater. Interfaces 12(40), 44830–44839 (2020). https://doi.org/10.1021/acsami.0c13902

    Article  CAS  PubMed  Google Scholar 

  25. He, X., Ling, Z., Peng, X., Yang, X., Ma, L., Lu, S.: Facile synthesis of \(\text{Cu}_{2}\text{SnS}_{3}\) nanocrystals for efficient nitrogen reduction reaction. Electrochem. Commun. 148, 107441 (2023). https://doi.org/10.1016/j.elecom.2023.107441

    Article  CAS  Google Scholar 

  26. Mokhati, A., Benturki, O., Bernardo, M., Kecira, Z., Matos, I., Lapa, N., Ventura, M., Soares, O., Dorego, A.B., Fonseca, I.: Nanoporous carbons prepared from argan nutshells as potential removal agents of diclofenac and paroxetine. J. Mol. Liq. 326, 115368 (2021). https://doi.org/10.1016/j.molliq.2021.115368

    Article  CAS  Google Scholar 

  27. Menshchikov, I., Shkolin, A., Khozina, E., Fomkin, A.: Thermodynamics of adsorbed methane storage systems based on peat-derived activated carbons. Nanomaterials 10(7), 1379 (2020). https://doi.org/10.3390/nano10071379

    Article  CAS  PubMed  Google Scholar 

  28. Zuo, S., Zhang, W., Wang, Y., Xia, H.: Low-cost preparation of high-surface-area nitrogen-containing activated carbons from biomass-based chars by ammonia activation. Ind. Eng. Chem. Res. 59(16), 7527–7537 (2020). https://doi.org/10.1021/acs.iecr.9b06836

    Article  CAS  Google Scholar 

  29. Nanaji, K., Nirogi, A., Srinivas, P., Anandan, S., Vijay, R., Bathe, R.N., Pramanik, M., Narayan, K., Ravi, B., Rao, T.N.: Translational materials research—from laboratory to product: a 1200F cylindrical supercapacitor from petroleum coke derived activated carbon sheets. J. Energy Storage 55, 105650 (2022). https://doi.org/10.1016/j.est.2022.105650

    Article  Google Scholar 

  30. Ma, C., Lu, T., Demir, M., Yu, Q., Hu, X., Jiang, W., Wang, L.: Polyacrylonitrile-derived n-doped nanoporous carbon fibers for Co2 adsorption. ACS Appl. Nano Mater. 5(9), 13473–13481 (2022). https://doi.org/10.1021/acsanm.2c03126

    Article  CAS  Google Scholar 

  31. Ban, L.L., Crawford, D., Marsh, H.: Lattice-resolution electron microscopy in structural studies of non-graphitizing carbons from polyvinylidene chloride (PVDC). J. Appl. Crystallogr. 8(4), 415–420 (1975). https://doi.org/10.1107/S0021889875010904

    Article  Google Scholar 

  32. Kipling, J., Sherwood, J., Shooter, P., Thompson, N.: The pore structure and surface area of high-temperature polymer carbons. Carbon 1(3), 321–328 (1964). https://doi.org/10.1016/0008-6223(64)90286-6

    Article  CAS  Google Scholar 

  33. Smith, M.A., Foley, H.C., Lobo, R.F.: A simple model describes the pdf of a non-graphitizing carbon. Carbon 42(10), 2041–2048 (2004). https://doi.org/10.1016/j.carbon.2004.04.009

    Article  CAS  Google Scholar 

  34. Becker, P., Glenk, F., Kormann, M., Popovska, N., Etzold, B.J.: Chlorination of titanium carbide for the processing of nanoporous carbon: a kinetic study. Chem. Eng. J. 159(1), 236–241 (2010). https://doi.org/10.1016/j.cej.2010.02.011

    Article  CAS  Google Scholar 

  35. Durairaj, A., Sakthivel, T., Ramanathan, S., Obadiah, A., Vasanthkumar, S.: Conversion of laboratory paper waste into useful activated carbon: a potential supercapacitor material and a good adsorbent for organic pollutant and heavy metals. Cellulose 26(5), 3313–3324 (2019). https://doi.org/10.1007/s10570-019-02277-4

    Article  CAS  Google Scholar 

  36. Kwiatkowski, M., Broniek, E.: An evaluation of the reliability of the results obtained by the LBET, QSDFT, BET, and DR methods for the analysis of the porous structure of activated carbons. Materials 13(18), 3929 (2020). https://doi.org/10.3390/ma13183929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei, S., Kamali, A.R.: Dual-step air-thermal treatment for facile conversion of pet into porous carbon particles with enhanced dye adsorption performance. Diam. Relat. Mater. 107, 107914 (2020). https://doi.org/10.1016/j.diamond.2020.107914

    Article  CAS  Google Scholar 

  38. Shrestha, L.K., Shrestha, R.G., Maji, S., Pokharel, B.P., Rajbhandari, R., Shrestha, R.L., Pradhananga, R.R., Hill, J.P., Ariga, K.: High surface area nanoporous graphitic carbon materials derived from lapsi seed with enhanced supercapacitance. Nanomaterials 10(4), 728 (2020). https://doi.org/10.3390/nano10040728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shrestha, L., Thapa, M., Shrestha, R., Maji, S., Pradhananga, R., Ariga, K.: Rice husk-derived high surface area nanoporous carbon materials with excellent iodine and methylene blue adsorption properties. C 5(1), 10 (2019). https://doi.org/10.3390/c5010010

    Article  CAS  Google Scholar 

  40. Hadden, M., Martinez-Martin, D., Yong, K.T., Ramaswamy, Y., Singh, G.: Recent advancements in the fabrication of functional nanoporous materials and their biomedical applications. Materials 15(6), 2111 (2022). https://doi.org/10.3390/ma15062111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shrestha, L.K., Wei, Z., Subramaniam, G., Shrestha, R.G., Singh, R., Sathish, M., Ma, R., Hill, J.P., Nakamura, J., Ariga, K.: Nanoporous hollow carbon spheres derived from fullerene assembly as electrode materials for high-performance supercapacitors. Nanomaterials 13(5), 946 (2023). https://doi.org/10.3390/nano13050946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Montiel-Centeno, K., García-Villén, F., Barrera, D., Amaya-Roncancio, S., Sánchez-Espejo, R., Arroyo-Gómez, J.J., Sandri, G., Viseras, C., Sapag, K.: Biocompatible nanoporous carbons as a carrier system for controlled release of cephalexin. Colloids Surf. B 220, 112937 (2022). https://doi.org/10.1016/j.colsurfb.2022.112937

    Article  CAS  Google Scholar 

  43. Oschatz, M., Walczak, R.: Crucial factors for the application of functional nanoporous carbon-based materials in energy and environmental applications. C 4(4), 56 (2018). https://doi.org/10.3390/c4040056

    Article  CAS  Google Scholar 

  44. Yamada, Y., Ishii, M., Nakamura, T., Yano, K.: Artificial black opal fabricated from nanoporous carbon spheres. Langmuir 26(12), 10044–10049 (2010). https://doi.org/10.1021/la1001732

    Article  CAS  PubMed  Google Scholar 

  45. Torad, N.L., Li, Y., Ishihara, S., Ariga, K., Kamachi, Y., Lian, H.Y., Hamoudi, H., Sakka, Y., Chaikittisilp, W., Wu, K.C.W., Yamauchi, Y.: Mof-derived nanoporous carbon as intracellular drug delivery carriers. Chem. Lett. 43(5), 717–719 (2014). https://doi.org/10.1246/cl.131174

    Article  CAS  Google Scholar 

  46. Bello, R., Rodríguez-Aguado, E., Smith, V.A., Grachev, D., Castellòn, E.R., Bashkova, S.: Ni-doped ordered nanoporous carbon prepared from chestnut wood tannins for the removal and photocatalytic degradation of methylene blue. Nanomaterials 12(10), 1625 (2022). https://doi.org/10.3390/nano12101625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ariyanto, T., Sarwendah, R.A., Amimmal, Y.M., Laksmana, W.T., Prasetyo, I.: Modifying nanoporous carbon through hydrogen peroxide oxidation for removal of metronidazole antibiotics from simulated wastewater. Processes 7(11), 835 (2019). https://doi.org/10.3390/pr7110835

    Article  CAS  Google Scholar 

  48. Ngene, P., van den Berg, R., Verkuijlen, M.H.W., de Jong, K.P., de Jongh, P.E.: Reversibility of the hydrogen desorption from nabh4 by confinement in nanoporous carbon. Energy Environ. Sci. 4, 4108–4115 (2011). https://doi.org/10.1039/C1EE01481A

    Article  CAS  Google Scholar 

  49. Tang, J., Liu, J., Torad, N.L., Kimura, T., Yamauchi, Y.: Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9(3), 305–323 (2014). https://doi.org/10.1016/j.nantod.2014.05.003

    Article  CAS  Google Scholar 

  50. Kumar, N., Wani, T.A., Pathak, P.K., Bera, A., Salunkhe, R.R.: Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustain. Energy Fuels 6, 1762–1769 (2022). https://doi.org/10.1039/D2SE00092J

    Article  CAS  Google Scholar 

  51. Liu, J., Wickramaratne, N.P., Qiao, S.Z., Jaroniec, M.: Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14(8), 763–774 (2015). https://doi.org/10.1038/nmat4317

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Z., Li, F., Stein, A.: Direct synthesis of shaped carbon nanoparticles with ordered cubic mesostructure. Nano Lett. 7(10), 3223–3226 (2007). https://doi.org/10.1021/nl072068j

    Article  CAS  PubMed  Google Scholar 

  53. Ouyang, Y., Shi, H., Fu, R., Wu, D.: Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties. Sci. Rep. 3(1), 1430 (2013). https://doi.org/10.1038/srep01430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choma, J., Jamiola, D., Augustynek, K., Marszewski, M., Gao, M., Jaroniec, M.: New opportunities in Stöber synthesis: Preparation of microporous and mesoporous carbon spheres. J. Mater. Chem. 22, 12636–12642 (2012). https://doi.org/10.1039/C2JM31678A

    Article  CAS  Google Scholar 

  55. Jong, S., Jin, G., Seok, C.: Method for preparing nanoporous carbons with enhanced mechanical strength and the nanoporous carbons prepared by the method. Patent US7326396 B2 (2002)

  56. Gogotsi, Y., Yushin, G., Hoffman, E., Barsoum, M.: Process for producing nanoporous carbide derived carbon with large specific surface area. Patent WO2007062095 A1 (2007)

  57. Mohun, W.: Mineral active carbon and process for producing same. Patent US3066099 A (1959)

  58. Khan, J.H., Lin, J., Young, C., Matsagar, B.M., Wu, K.C., Dhepe, P.L., Islam, M.T., Rahman, M.M., Shrestha, L.K., Alshehri, S.M., Ahamad, T., Salunkhe, R.R., Kumar, N.A., Martin, D.J., Yamauchi, Y., Hossain, M.S.A.: High surface area nanoporous carbon derived from high quality jute from Bangladesh. Mater. Chem. Phys. 216, 491–495 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.082

    Article  CAS  Google Scholar 

  59. Jang, J., Nam, Y.T., Kim, D., Kim, Y.J., Kim, D.W., Jung, H.T.: Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents. J. Mater. Chem. A 8, 8292–8299 (2020). https://doi.org/10.1039/D0TA00804D

    Article  CAS  Google Scholar 

  60. Wang, Y., Wang, X., Antonietti, M., Zhang, Y.: Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem 3(4), 435–439 (2010). https://doi.org/10.1002/cssc.200900284

    Article  CAS  PubMed  Google Scholar 

  61. Shrestha, R.G., Maji, S., Shrestha, L.K., Ariga, K.: Nanoarchitectonics of nanoporous carbon materials in supercapacitors applications. Nanomaterials 10(4), 639 (2020). https://doi.org/10.3390/nano10040639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barsoum, M., Gogotsi, Y.: Nanoporous carbide derived carbon with tunable pore size. Patent WO2005007566 A3 (2004)

  63. Goncharov, A., Guglya, A., Melnikova, E.: On the feasibility of developing hydrogen storages capable of adsorption hydrogen both in its molecular and atomic states. Int. J. Hydrog. Energy 37(23), 18061–18073 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.142

    Article  CAS  Google Scholar 

  64. Lin, Z., Taberna, P.L., Simon, P.: Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr. Opin. Electrochem. 9, 18–25 (2018). https://doi.org/10.1016/j.coelec.2018.03.004

    Article  CAS  Google Scholar 

  65. Sultana, I., Rahman, M.M., Glushenkov, A.M., Mateti, S., Tanwar, K., Huang, S., Chen, Y.: Nano germanium incorporated thin graphite nanoplatelets: a novel germanium based lithium-ion battery anode with enhanced electrochemical performance. Electrochim. Acta 391, 139001 (2021). https://doi.org/10.1016/j.electacta.2021.139001

    Article  CAS  Google Scholar 

  66. Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (provisional). Pure Appl. Chem. 54(11), 2201–2218 (1982). https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  67. Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985). https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  68. Stoeckli, H.: Microporous carbons and their characterization: the present state of the art. Carbon 28(1), 1–6 (1990). https://doi.org/10.1016/0008-6223(90)90086-E

    Article  CAS  Google Scholar 

  69. Stewart, J.Q., Korff, S.A.: The refractive index of sodium vapor and the width of the \(d\) lines in absorption. Phys. Rev. 32, 676–680 (1928). https://doi.org/10.1103/PhysRev.32.676

    Article  CAS  Google Scholar 

  70. McCave, I.N., Bryant, R.J., Cook, H.F., Coughanowr, C.A.: Evaluation of a laser-diffraction-size analyzer for use with natural sediments. J. Sediment. Res. 56(4), 561–564 (1986). https://doi.org/10.1306/212F89CC-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  71. Liu, X., Wang, C., Wu, Q., Wang, Z.: Magnetic porous carbon-based solid-phase extraction of carbamates prior to hplc analysis. Microchim. Acta 183(1), 415–421 (2016). https://doi.org/10.1007/s00604-015-1664-8

    Article  CAS  Google Scholar 

  72. Trognko, L., Lecante, P., Ratel-Ramond, N., Rozier, P., Daffos, B., Taberna, P.L., Simon, P.: Tic-carbide derived carbon electrolyte adsorption study by ways of X-ray scattering analysis. Mater. Renew. Sustain. Energy 4(4), 17 (2015). https://doi.org/10.1007/s40243-015-0059-4

    Article  PubMed  PubMed Central  Google Scholar 

  73. Prehal, C., Koczwara, C., Jäckel, N., Schreiber, A., Burian, M., Amenitsch, H., Hartmann, M.A., Presser, V., Paris, O.: Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ x-ray scattering. Nat. Energy 2(3), 16215 (2017). https://doi.org/10.1038/nenergy.2016.215

    Article  CAS  Google Scholar 

  74. Sztucki, M., Narayanan, T.: Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter. J. Appl. Crystallogr. 40(s1), s459–s462 (2007). https://doi.org/10.1107/S0021889806045833

    Article  CAS  Google Scholar 

  75. Koczwara, C., Prehal, C., Haas, S., Boesecke, P., Huesing, N., Paris, O.: Towards real-time ion-specific structural sensitivity in nanoporous carbon electrodes using in situ anomalous small-angle x-ray scattering. ACS Appl. Mater. Interfaces 11(45), 42214–42220 (2019). https://doi.org/10.1021/acsami.9b14242

    Article  CAS  PubMed  Google Scholar 

  76. Abell, A., Willis, K., Lange, D.: Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interface Sci. 211(1), 39–44 (1999). https://doi.org/10.1006/jcis.1998.5986

    Article  CAS  PubMed  Google Scholar 

  77. Oschatz, M.: New routes towards nanoporous carbon materials for electrochemical energy storage and gas adsorption. Phd thesis, Technical University of Dresda (2014)

  78. Wollmann, P., Leistner, M., Stoeck, U., Grünker, R., Gedrich, K., Klein, N., Throl, O., Grählert, W., Senkovska, I., Dreisbach, F., Kaskel, S.: High-throughput screening: speeding up porous materials discovery. Chem. Commun. 47, 5151–5153 (2011). https://doi.org/10.1039/C1CC10674K

    Article  CAS  Google Scholar 

  79. Wollmann, P., Leistner, M., Grählert, W., Throl, O., Dreisbach, F., Kaskel, S.: Infrasorb: optical detection of the heat of adsorption for high throughput adsorption screening of porous solids. Microporous Mesoporous Mater. 149(1), 86–94 (2012). https://doi.org/10.1016/j.micromeso.2011.08.028

    Article  CAS  Google Scholar 

  80. Jäntschi, L., Bolboaca, S.D.: Nanoporous carbon, p. 13. Apple Academic Press, New York (2020). https://doi.org/10.1201/9780429022944-28

    Book  Google Scholar 

  81. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  82. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  83. International Organization for Standardization: Determination of the specific surface area of solids by gas adsorption—bet method. Standard ISO 9277:2022(E), 3rd edn. International Organization for Standardization, Geneva, CH (2022)

  84. ASTM International: Standard test method for carbon black—total and external surface area by nitrogen adsorption. Standard ASTM D6556-21, ASTM International, West Conshohocken, PA, USA (2021). https://doi.org/10.1520/D6556-14

  85. Emmett, P.H.: Adsorption and pore-size measurements on charcoals and whetlerites. Chem. Rev. 43(1), 69–148 (1948). https://doi.org/10.1021/cr60134a003

    Article  CAS  PubMed  Google Scholar 

  86. Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960). https://doi.org/10.1021/cr60204a006

    Article  CAS  Google Scholar 

  87. Biggs, M.J., Buts, A.: Virtual porous carbons: what they are and what they can be used for. Mol. Simul. 32(7), 579–593 (2006). https://doi.org/10.1080/08927020600836242

    Article  CAS  Google Scholar 

  88. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  89. Mayoral, E.P., Matos, I., Bernardo, M., Durán-Valle, C., Fonseca, I.: In: Sadjadi, S.(ed.) Emerging carbon materials for catalysis, pp. 299–352. Elsevier (2021). https://doi.org/10.1016/B978-0-12-817561-3.00009-3. https://www.sciencedirect.com/science/article/pii/B9780128175613000093

  90. Biesmans, G., Mertens, A., Duffours, L., Woignier, T., Phalippou, J.: Polyurethane based organic aerogels and their transformation into carbon aerogels. J. Non Cryst. Solids 225, 64–68 (1998). https://doi.org/10.1016/S0022-3093(98)00010-6

    Article  CAS  Google Scholar 

  91. Reichenauer, G., Fricke, J.: Gas transport in sol-gel derived porous carbon aerogels. MRS Online Proc. Lib. 464, 345 (1996). https://doi.org/10.1557/PROC-464-345

    Article  Google Scholar 

  92. Lu, T., Liu, Y., Xu, X., Pan, L., Alothman, A.A., Shapter, J., Wang, Y., Yamauchi, Y.: Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Sep. Purif. Technol. 256, 117771 (2021). https://doi.org/10.1016/j.seppur.2020.117771

    Article  CAS  Google Scholar 

  93. Lee, J., Han, S., Hyeon, T.: Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J. Mater. Chem. 14, 478–486 (2004). https://doi.org/10.1039/B311541K

    Article  CAS  Google Scholar 

  94. Rojas-Cervantes, M.L.: Some strategies to lower the production cost of carbon gels. J. Mater. Sci. 50(3), 1017–1040 (2015). https://doi.org/10.1007/s10853-014-8617-1

    Article  CAS  Google Scholar 

  95. Pekala, R., Alviso, C., Lu, X., Gross, J., Fricke, J.: New organic aerogels based upon a phenolic-furfural reaction. J. Non Cryst. Solids 188(1), 34–40 (1995). https://doi.org/10.1016/0022-3093(95)00027-5

    Article  CAS  Google Scholar 

  96. Wu, X., Zhang, X., Wang, X., Zhang, C., Zhu, Q., Du, A., Zhang, Z., Shen, J.: Aqueous-based, high-density nanoporous carbon xerogels with high specific surface area for supercapacitors. J. Porous Mater. 29(1), 87–95 (2022). https://doi.org/10.1007/s10934-021-01149-2

    Article  CAS  Google Scholar 

  97. Li, W., Guo, S.: Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38(10), 1520–1523 (2000). https://doi.org/10.1016/S0008-6223(00)00114-7

    Article  CAS  Google Scholar 

  98. Babic, B., Kokuneoski, M., Miljkovic, M., Prekajski, M., Matovic, B., Gulicovski, J., Bucevac, D.: Synthesis and characterization of the sba-15/carbon cryogel nanocomposites. Ceram. Int. 38(6), 4875–4883 (2012). https://doi.org/10.1016/j.ceramint.2012.02.078

    Article  CAS  Google Scholar 

  99. Shruti, M.K.: Polybenzoxazine aerogels: synthesis, characterization, conversion to porous carbons, and energetic composites. Phd thesis, Missouri University of Science and Technology (2013)

  100. Edlabadkar, V.A., Gorla, S., Soni, R.U., Shaheenuddoulah, A.B.M., Gloriod, J., Hackett, S., Leventis, N., Sotiriou-Leventis, C.: Polybenzodiazine aerogels: all-nitrogen analogues of polybenzoxazines-synthesis, characterization, and high-yield conversion to nanoporous carbons. Chem. Mater. 35(2), 432–446 (2023). https://doi.org/10.1021/acs.chemmater.2c02797

    Article  CAS  Google Scholar 

  101. Zhang, R., Li, W., Liang, X., Wu, G., Lü, Y., Zhan, L., Lu, C., Ling, L.: Effect of hydrophobic group in polymer matrix on porosity of organic and carbon aerogels from sol-gel polymerization of phenolic resole and methylolated melamine. Microporous Mesoporous Mater. 62(1), 17–27 (2003). https://doi.org/10.1016/S1387-1811(03)00386-X

    Article  CAS  Google Scholar 

  102. Czakkel, O., Marthi, K., Geissler, E., László, K.: Influence of drying on the morphology of resorcinol-formaldehyde-based carbon gels. Microporous Mesoporous Mater. 86(1), 124–133 (2005). https://doi.org/10.1016/j.micromeso.2005.07.021

    Article  CAS  Google Scholar 

  103. Kabbour, H., Baumann, T.F., Satcher, J.H., Saulnier, A., Ahn, C.C.: Toward new candidates for hydrogen storage: high-surface-area carbon aerogels. Chem. Mater. 18(26), 6085–6087 (2006). https://doi.org/10.1021/cm062329a

    Article  CAS  Google Scholar 

  104. Shimoda, H., Oh, S., Geng, H., Walker, R., Zhang, X., McNeil, L., Zhou, O.: Self-assembly of carbon nanotubes. Adv. Mater. 14(12), 899–901 (2002)

    Article  CAS  Google Scholar 

  105. Zhou, O., Shimoda, H., Gao, B., Oh, S., Fleming, L., Yue, G.: Materials science of carbon nanotubes: Fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc. Chem. Res. 35(12), 1045–1053 (2002). https://doi.org/10.1021/ar010162f

    Article  CAS  PubMed  Google Scholar 

  106. Lee, S.H., Lee, D.H., Lee, W.J., Kim, S.O.: Tailored assembly of carbon nanotubes and graphene. Adv. Funct. Mater. 21(8), 1338–1354 (2011). https://doi.org/10.1002/adfm.201002048

    Article  CAS  Google Scholar 

  107. Wu, D., Zhang, F., Liang, H., Feng, X.: Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chem. Soc. Rev. 41, 6160–6177 (2012). https://doi.org/10.1039/C2CS35179J

    Article  CAS  PubMed  Google Scholar 

  108. Morishita, T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A., Konno, H., Inagaki, M.: A review of the control of pore structure in mgo-templated nanoporous carbons. Carbon 48(10), 2690–2707 (2010). https://doi.org/10.1016/j.carbon.2010.03.064

    Article  CAS  Google Scholar 

  109. Kyotani, T., Nagai, T., Inoue, S., Tomita, A.: Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 9(2), 609–615 (1997). https://doi.org/10.1021/cm960430h

    Article  CAS  Google Scholar 

  110. Malgras, V., Tang, J., Wang, J., Kim, J., Torad, N.L., Dutta, S., Ariga, K., Hossain, M.S.A., Yamauchi, Y., Wu, K.C.W.: Fabrication of nanoporous carbon materials with hard- and soft-templating approaches: a review. J. Nanosci. Nanotechnol. 19(7), 3673–3685 (2019). https://doi.org/10.1166/jnn.2019.16745

    Article  CAS  PubMed  Google Scholar 

  111. Jäntschi, L.: General chemistry, 3rd edn, AcademicDirect, Cluj-Napoca (2013). http://ph.academicdirect.org/GCC_v3.pdf

  112. Maiti, D., Tong, X., Mou, X., Yang, K.: Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 9(9), 1401 (2019). https://doi.org/10.3389/fphar.2018.01401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gilbert, M.T., Knox, J.H., Kaur, B.: Porous glassy carbon, a new columns packing material for gas chromatography and high-performance liquid chromatography. Chromatographia 16(1), 138–146 (1982). https://doi.org/10.1007/BF02258884

    Article  CAS  Google Scholar 

  114. Corbin, D., Foley, H., Shiflett, M.: Mixed matrix nanoporous carbon membranes. Patent US6740143 B2 (2001)

  115. Ribeiro, R.P., Sauer, T.P., Lopes, F.V., Moreira, R.F., Grande, C.A., Rodrigues, A.E.: Adsorption of \(\text{CO}_{2}\), \(\text{CH}_{4}\), and \(\text{N}_{2}\) in activated carbon honeycomb monolith. J. Chem. Eng. Data 53(10), 2311–2317 (2008). https://doi.org/10.1021/je800161m

    Article  CAS  Google Scholar 

  116. Shao, H., Wu, Y.C., Lin, Z., Taberna, P.L., Simon, P.: Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020). https://doi.org/10.1039/D0CS00059K

    Article  CAS  PubMed  Google Scholar 

  117. Atchudan, R., Samikannu, K., Perumal, S., Immanueledison, T.N.J., Vinodh, R., Lee, Y.R.: Aesculus turbinata biomass-originated nanoporous carbon for energy storage applications. Mater. Lett. 309, 131445 (2022). https://doi.org/10.1016/j.matlet.2021.131445

    Article  CAS  Google Scholar 

  118. Dimeo, F., Carruthers, J., Wodjenski, M., McManus, J., Marzullo, J.: Nanoporous carbon materials, and systems and methods utilizing same. Patent WO2007136887 A2 (2007)

  119. Carruthers, J., Dimeo, F., Bobita, B.: Nanoporous articles and methods of making same. Patent US2011220518 A1 (2011)

  120. Ting, V.P., Ramirez-Cuesta, A.J., Bimbo, N., Sharpe, J.E., Noguera-Diaz, A., Presser, V., Rudic, S., Mays, T.J.: Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9(8), 8249–8254 (2015). https://doi.org/10.1021/acsnano.5b02623

    Article  CAS  PubMed  Google Scholar 

  121. Biener, J., Baumann, T., Shao, L., Weissmueller, J.: Nanoporous carbon actuator and methods of use thereof. Patent Patent US2010230298 A1 (2010)

  122. Falk, K., Coasne, B., Pellenq, R., Ulm, F.J., Bocquet, L.: Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nat. Commun. 6(1), 6949 (2015). https://doi.org/10.1038/ncomms7949

    Article  CAS  PubMed  Google Scholar 

  123. Atwa, M., Li, X., Wang, Z., Dull, S., Xu, S., Tong, X., Tang, R., Nishihara, H., Prinz, F., Birss, V.: Scalable nanoporous carbon films allow line-of-sight 3d atomic layer deposition of Pt: towards a new generation catalyst layer for pem fuel cells. Mater. Horiz. 8, 2451–2462 (2021). https://doi.org/10.1039/D1MH00268F

    Article  CAS  PubMed  Google Scholar 

  124. Wei, S., Qiu, Y., Sun, X., Wang, X., Li, H., Lan, G., Liu, J., Li, Y.: Sustainable nanoporous carbon catalysts derived from melamine assisted cross-linking of poly(vinyl chloride) waste for acetylene hydrochlorination. ACS Sustain. Chem. Eng. 10(32), 10476–10485 (2022). https://doi.org/10.1021/acssuschemeng.2c01183

    Article  CAS  Google Scholar 

  125. Bandosz, T.J.: In: Liu, J., Ding F. (eds.) Nanoporous materials for molecule separation and conversion. Micro and nano technologies, pp. 45–64. Elsevier (2020). https://doi.org/10.1016/B978-0-12-818487-5.00002-9. https://www.sciencedirect.com/science/article/pii/B9780128184875000029

  126. Bandosz, T.: Exploring the silent aspect of carbon nanopores. Nanomaterials 11(2), 407 (2021). https://doi.org/10.3390/nano11020407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, H., Min, S., Ma, C., Liu, Z., Zhang, W., Wang, Q., Li, D., Li, Y., Turner, S., Han, Y., Zhu, H., Abou-hamad, E., Hedhili, M.N., Pan, J., Yu, W., Huang, K.W., Li, L.J., Yuan, J., Antonietti, M., Wu, T.: Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nat. Commun. 8(1), 13592 (2017). https://doi.org/10.1038/ncomms13592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cagnon, B., Secula, M.S., Sena Bayazit, Sahika.: In: Bartoli, M., Frediani, M., Rosi L. (eds.) Carbon-based material for environmental protection and remediation, IntechOpen, Rijeka (2020). https://doi.org/10.5772/intechopen.91355

  129. Mao, H., Tang, J., Xu, J., Peng, Y., Chen, J., Wu, B., Jiang, Y., Hou, K., Chen, S., Wang, J., Lee, H.R., Halat, D.M., Zhang, B., Chen, W., Plantz, A.Z., Lu, Z., Cui, Y., Reimer, J.A.: Revealing molecular mechanisms in hierarchical nanoporous carbon via nuclear magnetic resonance. Matter 3(6), 2093–2107 (2020). https://doi.org/10.1016/j.matt.2020.09.024

    Article  Google Scholar 

  130. El Mohajir, A., Castro-Gutiérrez, J., Canevesi, R.L.S., Bezverkhyy, I., Weber, G., Bellat, J.P., Berger, F., Celzard, A., Fierro, V., Sanchez, J.B.: Novel porous carbon material for the detection of traces of volatile organic compounds in indoor air. ACS Appl. Mater. Interfaces 13(33), 40088–40097 (2021). https://doi.org/10.1021/acsami.1c10430

    Article  CAS  PubMed  Google Scholar 

  131. Zhu, J., Huang, W., Fu, L., Zhu, B., Li, X., Wang, X., Wang, Y., Chen, W.: Nanoporous asphalt-based activated carbon prepared from emulsified asphalt and graphene oxide as high-thermal-conducting adsorbers for n-hexane vapor recovery. ACS Appl. Nano Mater. 4(11), 12453–12460 (2021). https://doi.org/10.1021/acsanm.1c02954

    Article  CAS  Google Scholar 

  132. Kim, M., Xin, R., Earnshaw, J., Tang, J., Hill, J.P., Ashok, A., Nanjundan, A.K., Kim, J., Young, C., Sugahara, Y., Na, J., Yamauchi, Y.: Mof-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat. Protocols 17(12), 2990–3027 (2022). https://doi.org/10.1038/s41596-022-00718-2

    Article  CAS  PubMed  Google Scholar 

  133. Hsu, C.C., Lin, Y.C., Lin, Y.Y., Li, H.T., Ni, C.S., Liu, C.I., Chang, C.C., Lin, L.C., Pan, Y.T., Liu, S.F., Liu, T.Y., Chen, H.Y.: Trapa natans husk-derived nanoporous carbons as electrode materials for sustainable high-power microbial fuel cell supercapacitor systems. Adv. Energy Sustain. Res. 3(5), 2100163 (2022). https://doi.org/10.1002/aesr.202100163

    Article  CAS  Google Scholar 

  134. Sun, X., Liu, Y., Xu, R., Chen, Y.: Mof-derived nanoporous carbon incorporated in the cation exchange membrane for gradient power generation. Membranes 12(3), 322 (2022). https://doi.org/10.3390/membranes12030322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, C., Xue, Z., Wen, J.: Recent advances in mof-based materials for remediation of heavy metals and organic pollutants: insights into performance, mechanisms, and future opportunities. Sustainability 15(8), 6686 (2023). https://doi.org/10.3390/su15086686

    Article  CAS  Google Scholar 

  136. Xin, S., Guo, Y.G., Wan, L.J.: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45(10), 1759–1769 (2012). https://doi.org/10.1021/ar300094m

    Article  CAS  PubMed  Google Scholar 

  137. Chen, X., Gao, J., Wang, L., Zhu, P., Zhao, X., Wang, G., Liu, S.: Core-shell structured nanoporous N-doped carbon decorated with embedded Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. New J. Chem. 45, 2760–2764 (2021). https://doi.org/10.1039/D0NJ06196D

    Article  CAS  Google Scholar 

  138. Roszak, R., Firlej, L., Roszak, S., Pfeifer, P., Kuchta, B.: Hydrogen storage by adsorption in porous materials: is it possible? Colloids Surf. A 496, 69–76 (2016). Characterization of porous materials: from Angstroms to millimeters—VII https://doi.org/10.1016/j.colsurfa.2015.10.046. https://www.sciencedirect.com/science/article/pii/S092777571530306X

  139. Hirscher, M., Zhang, L., Oh, H.: Nanoporous adsorbents for hydrogen storage. Appl. Phys. A 129(2), 112 (2023). https://doi.org/10.1007/s00339-023-06397-4

    Article  CAS  Google Scholar 

  140. Rodríguez-Reinoso, F., Silvestre-Albero, J.: Methane Storage on nanoporous carbons, pp. 209–226. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3504-4_8

  141. Memetova, A., Tyagi, I., Karri, R.R., Suhas, Memetov, N., Zelenin, A., Stolyarov, R., Babkin, A., Yagubov, V., Burmistrov, I., Tkachev, A., Bogoslovskiy, V., Shigabaeva, G., Galunin, E.: High-density nanoporous carbon materials as storage material for methane: A value-added solution. Chem. Eng. J. 433, 134608 (2022). https://doi.org/10.1016/j.cej.2022.134608

    Article  CAS  Google Scholar 

  142. Mabrouk, M., Rajendran, R., Soliman, I.E., Ashour, M.M., Beherei, H.H., Tohamy, K.M., Thomas, S., Kalarikkal, N., Arthanareeswaran, G., Das, D.B.: Nanoparticle- and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics 11(6), 294 (2019). https://doi.org/10.3390/pharmaceutics11060294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cheng, X., Zhang, Y., Lü, H., Liu, X., Hou, S., Chen, A. (2021). Porous carbon nanomaterials based tumor targeting drug delivery system a review. J. Inorg. Mater. 36(1), 9. https://doi.org/10.15541/jim20200240

  144. Chen, J., Xiao, G., Duan, G., Wu, Y., Zhao, X., Gong, X.: Structural design of carbon dots/porous materials composites and their applications. Chem. Eng. J. 421, 127743 (2021). https://doi.org/10.1016/j.cej.2020.127743

    Article  CAS  Google Scholar 

  145. Han, Y., Liu, H., Fan, M., Gao, S., Fan, D., Wang, Z., Chang, J., Zhang, J., Ge, K.: Near-infrared-ii photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration. J. Colloid Interface Sci. 616, 595–604 (2022). https://doi.org/10.1016/j.jcis.2022.02.083

    Article  CAS  PubMed  Google Scholar 

  146. De, B., Karak, N.: A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3, 8286–8290 (2013). https://doi.org/10.1039/C3RA00088E

    Article  CAS  Google Scholar 

  147. Nocito, G., Calabrese, G., Forte, S., Petralia, S., Puglisi, C., Campolo, M., Esposito, E., Conoci, S.: Carbon dots as promising tools for cancer diagnosis and therapy. Cancers 13(9), 1991 (2021). https://doi.org/10.3390/cancers13091991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chatzimitakos, T., Stalikas, C.: Recent advances in carbon dots. C 5(3), 41 (2019). https://doi.org/10.3390/c5030041

    Article  CAS  Google Scholar 

  149. Naik, G.G., Alam, M.B., Pandey, V., Mohapatra, D., Dubey, P.K., Parmar, A.S., Sahu, A.N.: Multi-functional carbon dots from an ayurvedic medicinal plant for cancer cell bioimaging applications. J. Fluoresc. 30(2), 407–418 (2020). https://doi.org/10.1007/s10895-020-02515-0

    Article  CAS  PubMed  Google Scholar 

  150. Tejwan, N., Saini, A.K., Sharma, A., Singh, T.A., Kumar, N., Das, J.: Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J. Control. Release 330, 132–150 (2021). https://doi.org/10.1016/j.jconrel.2020.12.023

    Article  CAS  PubMed  Google Scholar 

  151. Dugam, S., Nangare, S., Patil, P., Jadhav, N.: Carbon dots: a novel trend in pharmaceutical applications. Ann. Pharm. Fr. 79(4), 335–345 (2021). https://doi.org/10.1016/j.pharma.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  152. Luo, W.K., Zhang, L.L., Yang, Z.Y., Guo, X.H., Wu, Y., Zhang, W., Luo, J.K., Tang, T., Wang, Y.: Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J. Nanobiotechnol. 19(1), 320 (2021). https://doi.org/10.1186/s12951-021-01072-3

    Article  CAS  Google Scholar 

  153. Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253(2), 337–358 (2003). https://doi.org/10.1016/S0926-860X(03)00549-0

    Article  CAS  Google Scholar 

  154. Quinn, B.M., Dekker, C., Lemay, S.G.: Electrodeposition of noble metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc. 127(17), 6146–6147 (2005). https://doi.org/10.1021/ja0508828

    Article  CAS  PubMed  Google Scholar 

  155. Day, T.M., Unwin, P.R., Wilson, N.R., Macpherson, J.V.: Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J. Am. Chem. Soc. 127(30), 10639–10647 (2005). https://doi.org/10.1021/ja051320r

    Article  CAS  PubMed  Google Scholar 

  156. Hoeben, F.J.M., Meijer, F.S., Dekker, C., Albracht, S.P.J., Heering, H.A., Lemay, S.G.: Toward single-enzyme molecule electrochemistry: [nife]-hydrogenase protein film voltammetry at nanoelectrodes. ACS Nano 2(12), 2497–2504 (2008). https://doi.org/10.1021/nn800518d

    Article  CAS  PubMed  Google Scholar 

  157. Lu, J.: Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon 45(8), 1599–1605 (2007). https://doi.org/10.1016/j.carbon.2007.04.013

    Article  CAS  Google Scholar 

  158. Ombaka, L., Ndungu, P., Nyamori, V.: Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catal. Today 217, 65–75 (2013). https://doi.org/10.1016/j.cattod.2013.05.014

    Article  CAS  Google Scholar 

  159. Jasti, R., Bertozzi, C.R.: Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett. 494(1), 1–7 (2010). https://doi.org/10.1016/j.cplett.2010.04.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, H., Lee, H.J., Jeong, J., Lee, J., Park, N.B., Lee, C.: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism. Chem. Eng. J. 266, 28–33 (2015). https://doi.org/10.1016/j.cej.2014.12.065

    Article  CAS  Google Scholar 

  161. Pan, H., Xia, Q., Wang, Y., Shen, Z., Huang, H., Ge, Z., Li, X., He, J., Wang, X., Li, L., Wang, Y.: Recent advances in biodiesel production using functional carbon materials as acid/base catalysts. Fuel Process. Technol. 237, 107421 (2022). https://doi.org/10.1016/j.fuproc.2022.107421

    Article  CAS  Google Scholar 

  162. Meng, L., Zhang, X., Lu, Q., Fei, Z., Dyson, P.J.: Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6), 1689–1698 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  163. Kordzadeh, A., Zarif, M., Amjad-Iranagh, S.: Molecular dynamics insight of interaction between the functionalized-carbon nanotube and cancerous cell membrane in doxorubicin delivery. Comput. Methods Programs Biomed. 230, 107332 (2023). https://doi.org/10.1016/j.cmpb.2022.107332

    Article  PubMed  Google Scholar 

  164. Desale, K., Kuche, K., Jain, S.: Cell-penetrating peptides (cpps): an overview of applications for improving the potential of nanotherapeutics. Biomater. Sci. 9, 1153–1188 (2021). https://doi.org/10.1039/D0BM01755H

    Article  CAS  PubMed  Google Scholar 

  165. Anzar, N., Hasan, R., Tyagi, M., Yadav, N., Narang, J.: Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 1, 100003 (2020). https://doi.org/10.1016/j.sintl.2020.100003

    Article  Google Scholar 

  166. Zhou, H.C.J., Kitagawa, S.: Metal-organic frameworks (mofs). Chem. Soc. Rev. 43, 5415–5418 (2014). https://doi.org/10.1039/C4CS90059F

    Article  CAS  PubMed  Google Scholar 

  167. Öhrström, L., Amombo Noa, F.M.: Metal-organic frameworks, American Chemical Society, Washington, DC, USA (2021). https://doi.org/10.1021/acs.infocus.7e4004. https://pubs.acs.org/doi/abs/10.1021/acs.infocus.7e4004

  168. Yu, D., Song, Q., Cui, J., Zheng, H., Zhang, Y., Liu, J., Lv, J., Xu, T., Wu, Y.: Designing core-shell metal-organic framework hybrids: toward high-efficiency electrochemical potassium storage. J. Mater. Chem. A 9, 26181–26188 (2021). https://doi.org/10.1039/D1TA08215A

    Article  CAS  Google Scholar 

  169. Cai, L.F., Zhan, J.M., Liang, J., Yang, L., Yin, J.: Structural control of a novel hierarchical porous carbon material and its adsorption properties. Sci. Rep. 12(1), 3118 (2022). https://doi.org/10.1038/s41598-022-06781-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Eddaoudi, M., Li, H., Yaghi, O.M.: Highly porous and stable metal-organic frameworks: structure design and sorption properties. J. Am. Chem. Soc. 122(7), 1391–1397 (2000). https://doi.org/10.1021/ja9933386

    Article  CAS  Google Scholar 

  171. Mai, Z., Liu, D.: Synthesis and applications of isoreticular metal-organic frameworks irmofs-n (n = 1, 3, 6, 8). Cryst. Growth Des. 19(12), 7439–7462 (2019). https://doi.org/10.1021/acs.cgd.9b00879

    Article  CAS  Google Scholar 

  172. Cohen, S.M.: Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 112(2), 970–1000 (2012). https://doi.org/10.1021/cr200179u

    Article  CAS  PubMed  Google Scholar 

  173. Chavan, S., Vitillo, J.G., Gianolio, D., Zavorotynska, O., Civalleri, B., Jakobsen, S., Nilsen, M.H., Valenzano, L., Lamberti, C., Lillerud, K.P., Bordiga, S.: H2storage in isostructural UiO-67 and UiO-66 mofs. Phys. Chem. Chem. Phys. 14, 1614–1626 (2012). https://doi.org/10.1039/C1CP23434J

    Article  CAS  PubMed  Google Scholar 

  174. Wu, M.X., Yang, Y.W.: Metal-organic framework (mof)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29(23), 1606134 (2017). https://doi.org/10.1002/adma.201606134

    Article  CAS  Google Scholar 

  175. Micero, A., Hashem, T., Gliemann, H., Léon, A.: Hydrogen separation performance of uio-66-nh2 membranes grown via liquid-phase epitaxy layer-by-layer deposition and one-pot synthesis. Membranes 11(10), 735 (2021). https://doi.org/10.3390/membranes11100735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Du, L., Chen, W., Zhu, P., Tian, Y., Chen, Y., Wu, C.: Applications of functional metal-organic frameworks in biosensors. Biotechnol. J. 16(2), 1900424 (2021). https://doi.org/10.1002/biot.201900424

    Article  CAS  Google Scholar 

  177. Liu, J., Yang, Y., Zhu, W., Yi, X., Dong, Z., Xu, X., Chen, M., Yang, K., Lu, G., Jiang, L., Liu, Z.: Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97, 1–9 (2016). https://doi.org/10.1016/j.biomaterials.2016.04.034

    Article  CAS  PubMed  Google Scholar 

  178. Wang, X., Lan, P.C., Ma, S.: Metal-organic frameworks for enzyme immobilization: beyond host matrix materials. ACS Cent. Sci. 6(9), 1497–1506 (2020). https://doi.org/10.1021/acscentsci.0c00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dou, Y., Grande, C., Kaiser, A., Zhang, W.: Highly structured metal-organic framework nanofibers for methane storage. Sci. China Mater. 64(7), 1742–1750 (2021). https://doi.org/10.1007/s40843-020-1575-2

    Article  CAS  Google Scholar 

  180. Wang, H.S., Wang, Y.H., Ding, Y.: Development of biological metal-organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment. Nanoscale Adv. 2, 3788–3797 (2020). https://doi.org/10.1039/D0NA00557F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Peller, M., Böll, K., Zimpel, A., Wuttke, S.: Metal-organic framework nanoparticles for magnetic resonance imaging. Inorg. Chem. Front. 5, 1760–1779 (2018). https://doi.org/10.1039/C8QI00149A

    Article  CAS  Google Scholar 

  182. Ghosh, S.K.: Metal-organic frameworks (MOFs) for environmental applications, Elsevier, Amsterdam, (2019). https://doi.org/10.1016/C2017-0-01721-4. https://www.sciencedirect.com/book/9780128146330

  183. Jiao, L., Seow, J.Y.R., Skinner, W.S., Wang, Z.U., Jiang, H.L.: Metal-organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038

    Article  CAS  Google Scholar 

  184. Rezaee, T., Fazel-Zarandi, R., Karimi, A., Ensafi, A.A.: Metal-organic frameworks for pharmaceutical and biomedical applications. J. Pharm. Biomed. Anal. 221, 115026 (2022). https://doi.org/10.1016/j.jpba.2022.115026

    Article  CAS  PubMed  Google Scholar 

  185. El-Bindary, A.A., Toson, E.A., Shoueir, K.R., Aljohani, H.A., Abo-Ser, M.M.: Metal-organic frameworks as efficient materials for drug delivery: synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation. Appl. Organomet. Chem. 34(11), e5905 (2020). https://doi.org/10.1002/aoc.5905

    Article  CAS  Google Scholar 

  186. Rutkowski, S., Si, T., Gai, M., Frueh, J., He, Q.: Hydrodynamic electrospray ionization jetting of calcium alginate particles: effect of spray-mode, spraying distance and concentration. RSC Adv. 8, 24243–24249 (2018). https://doi.org/10.1039/C8RA03490G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., Férey, G.: Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45(36), 5974–5978 (2006). https://doi.org/10.1002/anie.200601878

    Article  CAS  Google Scholar 

  188. Beg, S., Rahman, M., Jain, A., Saini, S., Midoux, P., Pichon, C., Ahmad, F.J., Akhter, S.: Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discov. Today 22(4), 625–637 (2017). https://doi.org/10.1016/j.drudis.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  189. McKinlay, A., Morris, R., Horcajada, P., Férey, G., Gref, R., Couvreur, P., Serre, C.: Biomofs: metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49(36), 6260–6266 (2010). https://doi.org/10.1002/anie.201000048

    Article  CAS  Google Scholar 

  190. Motakef-Kazemi, N., Shojaosadati, S.A., Morsali, A.: In situ synthesis of a drug-loaded mof at room temperature. Microporous Mesoporous Mater. 186, 73–79 (2014). https://doi.org/10.1016/j.micromeso.2013.11.036

    Article  CAS  Google Scholar 

  191. Horcajada, P., Gref, R., Baati, T., Allan, P.K., Maurin, G., Couvreur, P., Férey, G., Morris, R.E., Serre, C.: Metal-organic frameworks in biomedicine. Chem. Rev. 112(2), 1232–1268 (2012). https://doi.org/10.1021/cr200256v

    Article  CAS  PubMed  Google Scholar 

  192. Zhuang, J., Young, A.P., Tsung, C.K.: Integration of biomolecules with metal-organic frameworks. Small 13(32), 1700880 (2017). https://doi.org/10.1002/smll.201700880

    Article  CAS  Google Scholar 

  193. Haldorai, Y., Choe, S.R., Huh, Y.S., Han, Y.K.: Metal-organic framework derived nanoporous carbon/Co3O4 composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor. Carbon 127, 366–373 (2018). https://doi.org/10.1016/j.carbon.2017.11.022

    Article  CAS  Google Scholar 

  194. He, S., Wu, L., Li, X., Sun, H., Xiong, T., Liu, J., Huang, C., Xu, H., Sun, H., Chen, W., Gref, R., Zhang, J.: Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B 11(8), 2362–2395 (2021). https://doi.org/10.1016/j.apsb.2021.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nazarian, D., Camp, J.S., Chung, Y.G., Snurr, R.Q., Sholl, D.S.: Large-scale refinement of metal-organic framework structures using density functional theory. Chem. Mater. 29(6), 2521–2528 (2017). https://doi.org/10.1021/acs.chemmater.6b04226

    Article  CAS  Google Scholar 

  196. Yallappa, S., Manaf, S.A.A., Hegde, G.: Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells. New Carbon Mater. 33(2), 162–172 (2018). https://doi.org/10.1016/S1872-5805(18)60332-4

    Article  CAS  Google Scholar 

  197. Chaikittisilp, W., Hu, M., Wang, H., Huang, H.S., Fujita, T., Wu, K.C.W., Chen, L.C., Yamauchi, Y., Ariga, K.: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259–7261 (2012). https://doi.org/10.1039/C2CC33433J

    Article  CAS  Google Scholar 

  198. Salunkhe, R.R., Kaneti, Y.V., Kim, J., Kim, J.H., Yamauchi, Y.: Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49(12), 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The author planned the study, made the drawings, and wrote the study.

Corresponding author

Correspondence to Lorentz Jäntschi.

Ethics declarations

Conflict of interest

There are no financial or non-financial interests that are directly or indirectly related to this work.

Consent to participate

Not applicable.

Consent for publication

The author agrees with the publication.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jäntschi, L. Nanoporous carbon, its pharmaceutical applications and metal organic frameworks. J Incl Phenom Macrocycl Chem 103, 245–261 (2023). https://doi.org/10.1007/s10847-023-01194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01194-1

Keywords

Navigation