Skip to main content
Log in

Creation of kinetically-controlled supramolecular systems based on coordination chemistry

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In biological systems, biomolecules achieve sophisticated functions based on both thermodynamic control and kinetic control. In contrast, in artificial supramolecular systems, molecular recognition behaviors in host–guest systems or self-assembly processes under thermodynamic control have been widely investigated for several decades. Recently, kinetic control of these processes has attracted more interest. This review describes three approaches for the kinetic control of supramolecular systems based on coordination chemistry. The discussion first focuses on the kinetic control of guest uptake of host–guest systems. The guest binding kinetics (i.e., guest uptake/release rate) can be basically controlled by the change in the aperture sizes of the host molecules. The second part provides representative examples of unveiling guest uptake/exchange mechanisms for a variety of supramolecular host–guest systems, which is important for the rational design of host molecules and prediction of their specific functions for future studies. The kinetic control of metal-assisted self-assembly processes is also introduced in the last part. The discussion especially focuses on investigation of the self-assembly pathway, control of the kinetic stability of self-assembled complexes, and the speed tuning of self-assembly processes by modulating the individual metal–ligand exchange rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Copyright 2009, American Chemical Society

Fig. 19
Fig. 20

Copyright 2018, American Chemical Society. b Formation of functionalized-metallonanobelt derivatives Pd5L5 (L = 15, 16, 17) having quinoxaline scaffolds

Fig. 21
Fig. 22

Copyright 2021, Wiley–VCH Verlag GmbH & Co KGaA

Fig. 23

Similar content being viewed by others

References

  1. Lehn, J.-M.: Supramolecular Chemistry: Concepts and Perspectives. VCH, Weinheim (1995)

    Book  Google Scholar 

  2. Hof, F., Craig, S.L., Nuckolls, C., Rebek, J., Jr.: Molecular encapsulation. Angew. Chem. Int. Ed. 41, 1488–1508 (2002)

    Article  CAS  Google Scholar 

  3. Hof, F., Rebek, J., Jr.: Molecules within molecules: recognition through self-assembly. Proc. Natl. Acad. Sci. USA 99, 4775–4777 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoshizawa, M., Klosterman, J.K., Fujita, M.: Functional molecular flasks: new properties and reactions within discrete self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009)

    Article  CAS  Google Scholar 

  5. Leininger, S., Olenyuk, B., Stang, P.J.: Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100, 853–908 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Fujita, M., Umemoto, K., Yoshizawa, M., Fujita, N., Kusukawa, T., Biradha, K.: Molecular paneling via coordination. Chem. Commun. 50, 509–518 (2001)

    Article  Google Scholar 

  7. Fujita, M., Tominaga, M., Hori, A., Therrien, B.: Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res. 38, 371–380 (2005)

    Article  Google Scholar 

  8. Chakrabarty, R., Mukherjee, P.S., Stang, P.J.: Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smulders, M.M.J., Riddell, I.A., Browne, C., Nitschke, J.R.: Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev. 42, 1728–1754 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. McConnell, A.J., Wood, C.S., Neelakandan, P.P., Nitschke, J.R.: Stimuli-responsive metal−ligand assemblies. Chem. Rev. 115, 7729–7793 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Lingrel, J.B., Kuntzweiler, T.: Na+, K+-ATPase. J. Biol. Chem. 269, 19659–19662 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Kaplan, J.H.: Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Hille, B.: Ion Channels of Excitable Membranes. Sinauer, Sunderland (2001)

    Google Scholar 

  14. Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., MacKinnon, R.: Science 280, 69–77 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Beer, P.D.: Redox responsive marcocyclic receptor molecules containing transition metal redox centres. Chem. Soc. Rev. 18, 409–450 (1989)

    Article  CAS  Google Scholar 

  16. Beer, P.D., Gale, P.A., Chen, G.Z.: Electrochemical molecular recognition: pathways between complexation and signalling. J. Chem. Soc. Dalton Trans. 15, 1897–1909 (1999)

    Article  Google Scholar 

  17. Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Pochorovski, I., Diederich, F.: Development of redox-switchable resorcin[4]arene cavitands. Acc. Chem. Res. 47, 2096–2105 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Jeon, Y.-M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996)

    Article  CAS  Google Scholar 

  20. Whang, D., Heo, J., Park, J.H., Kim, K.: A molecular bowl with metal ion as bottom: reversible inclusion of organic molecules in cesium ion complexed cucurbituril. Angew. Chem. Int. Ed. 37, 78–80 (1998)

    Article  CAS  Google Scholar 

  21. Chan, A.K.-W., Lam, W.H., Tanaka, Y., Wong, K.M.-C., Yam, V.W.-W.: Multiaddressable molecular rectangles with reversible host-guest interactions: Modulation of pH-controlled guest release and capture. Proc. Natl. Acad. Sci. USA 112, 690–695 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, S., Flood, A.H.: Photoresponsive receptors for binding and releasing anions. J. Phys. Org. Chem. 26, 79–86 (2013)

    Article  CAS  Google Scholar 

  23. Qu, D.-H., Wnag, Q.-C., Zhang, Q.-W., Ma, X., Tian, H.: Photoresponsive host−guest functional systems. Chem. Rev. 115, 7543–7588 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Shinkai, S., Nakaji, T., Ogawa, T., Shigematsu, K., Manabe, O.: Photoresponsive crown ethers: 2: photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J. Am. Chem. Soc. 103, 111–115 (1981)

    Article  CAS  Google Scholar 

  25. Blank, M., Soo, L.M., Wassermann, H.N., Erlanger, B.F.: Photoregulated ion binding. Science 214, 70–72 (1981)

    Article  CAS  PubMed  Google Scholar 

  26. Irie, M., Kato, M.: Photoresponsive molecular tweezers. photoregulated ion capture and release using thioindigo derivatives having ethylenedioxy side groups. J. Am. Chem. Soc. 107, 1024–1028 (1985)

    Article  CAS  Google Scholar 

  27. Han, M., Michel, R., He, B., Chen, Y.-S., Stalke, D., John, M., Clever, G.H.: Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem. Int. Ed. 52, 1319–1323 (2013)

    Article  CAS  Google Scholar 

  28. Nabeshima, T., Yoshihira, Y., Saiki, T., Akine, S., Horn, E.: Remarkably large positive and negative allosteric effects on ion recognition by the formation of a novel helical pseudocryptand. J. Am. Chem. Soc. 125, 28–29 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Hiraoka, S., Harano, K., Shiro, M., Shionoya, M.: Quantitative dynamic interconversion between AgI-mediated capsule and cage complexes accompanying guest encapsulation/release. Angew. Chem. Int. Ed. 44, 2727–2731 (2005)

    Article  CAS  Google Scholar 

  30. Nabeshima, T., Saiki, T., Iwabuchi, S., Akine, S.: Stepwise and dramatic enhancement of anion recognition with a triple-site receptor based on the calix[4]arene framework using two different cationic effectors. J. Am. Chem. Soc. 127, 5507–5511 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Durola, F., Rebek, J., Jr.: The ouroborand: a cavitand with a coordination-driven switching device. Angew. Chem. Int. Ed. 49, 3189–3191 (2010)

    Article  CAS  Google Scholar 

  32. Mattia, E., Otto, S.: Supramolecular systems chemistry. Nat. Nanotech. 10, 111–119 (2015)

    Article  CAS  Google Scholar 

  33. Yang, L., Tan, X., Wang, Z., Zhang, X.: Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115, 7196–7239 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Yan, Y., Huang, J., Tang, B.Z.: Kinetic trapping: a strategy for directing the self-assembly of unique functional nanostructures. Chem. Commun. 52, 11870–11884 (2016)

    Article  CAS  Google Scholar 

  35. Shigeno, M., Kushida, Y., Yamaguchi, M.: Molecular switching involving metastable states: molecular thermal hysteresis and sensing of environmental changes by chiral helicene oligomeric foldamers. Chem. Commun. 52, 4955–4970 (2016)

    Article  CAS  Google Scholar 

  36. Pluth, M.D., Raymond, K.N.: Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chem. Soc. Rev. 36, 161–171 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Liu, F., Wang, H., Houk, K.N.: Gated container molecules. Sci. China Chem. 54, 2038–2044 (2011)

    Article  CAS  Google Scholar 

  38. Liu, F., Wang, H., Houk, K.N.: Gating in host-guest chemistry. Curr. Org. Chem. 17, 1470–1480 (2013)

    Article  CAS  Google Scholar 

  39. Liu, F., Helgeson, R.C., Houk, K.N.: Building on cram’s legacy: stimulated gating in hemicarcerands. Acc. Chem. Res. 47, 2168–2176 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rieth, S., Hermann, K., Wang, B.-Y., Badjić, J. D.: Controlling the dynamics of molecular encapsulation and gating. Chem. Soc. Rev. 40, 1609–1622 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Hermann, K., Ruan, Y., Hardin, A.M., Hadad, C.M., Badjić, J.D.: Gated molecular baskets. Chem. Soc. Rev. 44, 500–514 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Akine, S., Sakata, Y.: Control of guest binding kinetics in macrocycles and molecular cages. Chem. Lett. 49, 428–441 (2020)

    Article  CAS  Google Scholar 

  43. Cram, D.J., Karbach, S., Kim, Y.H., Baczynskyj, L., Kalleymeyn, G.W.: Shell closure of two cavitands forms carcerand complexes with components of the medium as permanent guests. J. Am. Chem. Soc. 107, 2575–2576 (1985)

    Article  CAS  Google Scholar 

  44. Bryant, J.A., Blanda, M.T., Vincenti, M., Cram, D.J.: Guest capture during shell closure. J. Am. Chem. Soc. 113, 2167–2172 (1991)

    Article  CAS  Google Scholar 

  45. Tanner, M.E., Knobler, C.B., Cram, D.J.: Hemicarcerands permit entrance to and egress from their inside phases with high structural recognition and activation free energies. J. Am. Chem. Soc. 112, 1659–1660 (1990)

    Article  CAS  Google Scholar 

  46. Cram, D.J., Tanner, M.E., Knobler, C.B.: Guest release and capture by hemicarcerands introduces the phenomenon of constrictive binding. J. Am. Chem. Soc. 113, 7717–7727 (1991)

    Article  CAS  Google Scholar 

  47. Palmer, L.C., Rebek, J., Jr.: The ins and outs of molecular encapsulation. Org. Biomol. Chem. 2, 3051–3059 (2004)

    Article  CAS  PubMed  Google Scholar 

  48. Heinz, T., Rudkevich, D.M., Rebek, J., Jr.: Pairwise selection of guests in acylindrical molecular capsule of nanometre dimensions. Nature 394, 764–766 (1998)

    Article  CAS  Google Scholar 

  49. Craig, S.L., Lin, S., Chen, J., Rebek, J., Jr.: An NMR study of the rates of single-molecule exchange in a cylindrical host capsule. J. Am. Chem. Soc. 124, 8780–8781 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. Harris, K., Fujita, D., Fujita, M.: Giant hollow M n L 2n spherical complexes: structure, functionalisation and applications. Chem. Commun. 49, 6703–6712 (2013)

    Article  CAS  Google Scholar 

  51. Caulder, D.L., Powers, R.E., Parac, T.N., Raymond, K.N.: The Self-assembly of a predesigned tetrahedral M4L6 supramolecular cluster. Angew. Chem. Int. Ed. 37, 1840–1843 (1998)

    Article  CAS  Google Scholar 

  52. Davis, A.V., Raymond, K.N.: The big squeeze: guest exchange in an M4L6 supramolecular host. J. Am. Chem. Soc. 127, 7912–7919 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. Smulders, M.M.J., Zarra, S., Nitschke, J.R.: Quantitative understanding of guest binding enables the design of complex host−guest behavior. J. Am. Chem. Soc. 135, 7039–7046 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. Clegg, J.K., Cremers, J., Hogben, A.J., Breiner, B., Smulders, M.M.J., Thoburn, J.D., Nitschke, J.R.: A stimuli responsive system of self-assembled anionbinding Fe4L68+ cages. Chem. Sci. 4, 68–76 (2013)

    Article  CAS  Google Scholar 

  55. Zarra, S., Wood, D.M., Roberts, D.A., Nitschke, J.R.: Molecular containers in complex chemical systems. Chem. Soc. Rev. 44, 419–432 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. Wang, H., Liu, F., Helgeson, R.C., Houk, K.N.: Reversible photochemically gated transformation of a hemicarcerand to a carcerand. Angew. Chem. Int. Ed. 52, 655–659 (2013)

    Article  CAS  Google Scholar 

  57. Zarra, S., Smulders, M.M.J., Lefebvre, Q., Clegg, J.K., Nitschke, J.R.: Guanidinium binding modulates guest exchange within an [M4L6] capsule. Angew. Chem. Int. Ed. 51, 6882–6885 (2012)

    Article  CAS  Google Scholar 

  58. Akine, S., Miyashita, M., Nabeshima, T.: A metallo-molecular cage that can close the apertures with coordination bonds. J. Am. Chem. Soc. 139, 4631–4634 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. Such site-selective ligand exchange on cobalt(III) saloph unit is also useful for tuning of helicity inversion speed of the metallocryptand. For details, see Sakata, Y., Chiba, S., Miyashita, M., Nabeshima, T., Akine, S.: Ligand Exchange Strategy for Tuning of Helicity Inversion Speeds of Dynamic Helical Tri(saloph) Metallocryptands. Chem. Eur. J. 25, 2962–2966 (2019). Sakata, Y., Chiba, S., Akine, S.: Transient chirality inversion during racemization of a helical cobalt(III) complex. Proc. Natl. Acad. Sci. USA 119, e2113237119 (2022).

  60. Akine, S., Miyashita, M., Nabeshima, T.: A closed metallomolecular cage that can open its aperture by disulfide exchange. Chem. Eur. J. 25, 1432–1435 (2019)

    Article  CAS  PubMed  Google Scholar 

  61. Sakata, Y., Okada, M., Tamiya, M., Akine, S.: Post-metalation modification of a macrocyclic dicobalt(iii) metallohost by site-selective ligand exchange for guest recognition control. Chem. Eur. J. 26, 7595–7601 (2020)

    Article  CAS  PubMed  Google Scholar 

  62. Sakata, Y., Okada, M., Akine, S.: Guest recognition control accompanied by stepwise gate closing and opening of a macrocyclic metallohost. Chem. Eur. J. 27, 2284–2288 (2021)

    Article  CAS  PubMed  Google Scholar 

  63. Sakata, Y., Murata, C., Akine, S.: Anion-capped metallohost allows extremely slow guest uptake and on-demand acceleration of guest exchange. Nat. Commun. 8, 16005 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takezawa, H., Tabuchi, R., Sunohara, H., Fujita, M.: Confinement of water-soluble cationic substrates in a cationic molecular cage by capping the portals with tripodal anions. J. Am. Chem. Soc. 142, 17919–17922 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. Davis, A.V., Fiedler, D., Seeber, G., Zahl, A., van Eldik, R., Raymond, K.N.: Guest exchange dynamics in an M4L6 tetrahedral host. J. Am. Chem. Soc. 128, 1324–1333 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. Escobar, L., Escudero-Adán, E.C., Ballester, P.: Guest exchange mechanisms in mono-metallic PdII/PtII-Cages based on a tetra-pyridyl calix[4]pyrrole ligand. Angew. Chem. Int. Ed. 58, 16105–16109 (2019)

    Article  CAS  Google Scholar 

  67. Aoki, S., Shiro, M., Kimura, E.: A cuboctahedral supramolecular capsule by 4:4 self-assembly of tris(ZnII-cyclen) and trianionic trithiocyanurate in aqueous solution at neutral pH (cyclen 1,4,7,10-tetraazacyclododecane). Chem. Eur. J. 8, 929–939 (2002)

    Article  CAS  PubMed  Google Scholar 

  68. Aoki, S., Suzuki, S., Kitamura, M., Haino, T., Shiro, M., Zulkefeli, M., Kimura, E.: Molecular recognition of hydrocarbon guests by a supramolecular capsule formed by the 4:4 self-assembly of tris(Zn2+–cyclen) and Trithiocyanurate in aqueous solution. Chem. Asian J. 7, 944–956 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Koshland, D.E., Jr.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monod, J., Wyman, J., Changeux, J.-P.: On the Nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  CAS  PubMed  Google Scholar 

  71. Boehr, D.D., Wright, P.E.: How do proteins interact? Science 320, 1429–1430 (2008)

    Article  CAS  PubMed  Google Scholar 

  72. Boehr, D.D., Nussinov, R., Wright, P.E.: The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Csermely, P., Palotai, R., Nussinov, R.: Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35, 539–546 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hammes, G.G., Chang, Y.-C., Oas, T.G.: Conformational selection or induced fit: A flux description of reaction mechanism. Proc. Natl. Acad. Sci. USA 106, 13737–13741 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tummino, P.J., Copeland, R.: A: residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47, 5481–5492 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. Vogt, A.D., Cera, E.D.: Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51, 5894–5902 (2012)

    Article  CAS  PubMed  Google Scholar 

  77. Bae, S., Kim, D., Kim, K.K., Kim, Y.-G., Hohng, S.: Intrinsic Z-DNA is stabilized by the conformational selection mechanism of Z-DNA-binding proteins. J. Am. Chem. Soc. 133, 668–671 (2011)

    Article  CAS  PubMed  Google Scholar 

  78. Kim, E., Lee, S., Jeon, A., Choi, J.M., Lee, H.-S., Hohng, S., Kim, H.-S.: A single-molecule dissection of ligand binding to a protein with intrinsic dynamics. Nat. Chem. Biol. 9, 313–318 (2013)

    Article  CAS  PubMed  Google Scholar 

  79. Suddala, K.C., Wang, J., Hou, Q., Walter, N.G.: Mg2+ shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection. J. Am. Chem. Soc. 137, 14075–14083 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gouridis, G., Schuurman-Wolters, G.K., Ploetz, E., Husada, F., Vietrov, R., de Boer, M., Cordes, T., Poolman, B.: Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat. Struct. Mol. Biol. 22, 57–64 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. Fujita, M., Ogura, K.: Transition-metal-directed assembly of well-defined organic architectures possessing large voids: from macrocycles to [2]catenanes. Coord. Chem. Rev. 148, 249–264 (1996)

    Article  CAS  Google Scholar 

  82. Piguet, C., Bünzli, J.-C.G.: Mono- and polymetallic lanthanide-containing functional assemblies: a field between tradition and novelty. Chem. Soc. Rev. 28, 347–358 (1999)

    Article  CAS  Google Scholar 

  83. Molenveld, P., Engbersen, J.F.J., Reinhoudt, D.N.: Dinuclear metallo-phosphodiesterase models: application of calix[4]arenes as molecular scaffolds. Chem. Soc. Rev. 29, 75–86 (2000)

    Article  CAS  Google Scholar 

  84. Hong, C.M., Kaphan, D.M., Bergman, R.G., Raymond, K.N., Toste, F.D.: Conformational selection as the mechanism of guest binding in a flexible supramolecular host. J. Am. Chem. Soc. 139, 8013–8021 (2017)

    Article  CAS  PubMed  Google Scholar 

  85. Sakata, Y., Tamiya, M., Okada, M., Akine, S.: Switching of Recognition First and Reaction First mechanisms in host−guest binding associated with chemical reactions. J. Am. Chem. Soc. 141, 15597–15604 (2019)

    Article  CAS  PubMed  Google Scholar 

  86. Yang, L.-P., Zhang, L., Quan, M., Ward, J.S., Ma, Y.-L., Zhou, H., Rissanen, K., Jiang, W.: A supramolecular system that strictly follows the binding mechanism of conformational selection. Nat. Commun. 11, 2740 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pavlović, R. Z., Lalisse, R. F., Hansen, A. L., Waudby, C. A., Lei, Z., Güney, M., Wang, X., Hadad, C. M., Badjić, J. D.: From selection to instruction and back: competing conformational selection and induced fit pathways in abiotic hosts. Angew. Chem. Int. Ed. 60, 19942–19948 (2021)

    Article  Google Scholar 

  88. Pluth, M.D., Bergman, R.G., Raymond, K.N.: Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Acc. Chem. Res. 42, 1650–1659 (2009)

    Article  CAS  PubMed  Google Scholar 

  89. Brown, C.J., Toste, F.D., Bergman, R.G., Raymond, K.N.: Supramolecular catalysis in metal−ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015)

    Article  CAS  PubMed  Google Scholar 

  90. Hasenknopf, B., Lehn, J.-M., Boumediene, N., Leize, E., Dorsselaer, A.V.: Kinetic and thermodynamic control in self-assembly: sequential formation of linear and circular helicates. Angew. Chem. Int. Ed. 37, 3265–3268 (1998)

    Article  CAS  Google Scholar 

  91. Albrecht, M., Dehn, S., Fröhlich, R.: A nonanuclear gallium(iii) cluster: an intermediate in the formation of dinuclear triple-stranded helicates? Angew. Chem. Int. Ed. 45, 2792–2794 (2006)

    Article  CAS  Google Scholar 

  92. Cangelosi, V.M., Carter, T.G., Zakharov, L.N., Johnson, D.W.: Observation of reaction intermediates and kinetic mistakes in a remarkably slow self-assembly reaction. Chem. Commun. 15, 5606–5608 (2009)

    Article  Google Scholar 

  93. Roberts, D.A., Castilla, A.M., Ronson, T.K., Nitschke, J.R.: Post-assembly modification of kinetically metastable FeII2L3 triple helicates. J. Am. Chem. Soc. 136, 8201–8204 (2014)

    Article  CAS  PubMed  Google Scholar 

  94. Fujita, D., Yokoyama, H., Ueda, Y., Sato, S., Fujita, M.: Geometrically restricted intermediates in the self-assembly of an M12L24 cuboctahedral complex. Angew. Chem. Int. Ed. 54, 155–158 (2015)

    Article  CAS  Google Scholar 

  95. Burke, M.J., Nichol, G.S., Lusby, P.J.: Orthogonal selection and fixing of coordination self-assembly pathways for robust metallo-organic ensemble construction. J. Am. Chem. Soc. 138, 9308–9315 (2016)

    Article  CAS  PubMed  Google Scholar 

  96. Riddell, I.A., Smulders, M.M.J., Clegg, J.K., Hristova, Y.R., Breiner, B., Thoburn, J.D., Nitschke, J.R.: Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co10L15 pentagonal prism. Nat. Chem. 4, 751–756 (2012)

    Article  CAS  PubMed  Google Scholar 

  97. Bogie, P.M., Holloway, L.R., Lyon, Y., Onishi, N.C., Beran, G.J.O., Julien, R.R., Hooley, R.J.: A springloaded metal-ligand mesocate allows access to trapped intermediates of self-assembly. Inorg. Chem. 57, 4155–4163 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. Hiraoka, S.: Unresolved issues that remain in molecular self-assembly. Bull. Chem. Soc. Jpn. 91, 957–978 (2018)

    Article  CAS  Google Scholar 

  99. Hiraoka, S.: Self-assembly processes of Pd(II)- and Pt(II)-linked discrete self-assemblies revealed by QASAP. Isr. J. Chem. 59, 151–165 (2019)

    Article  CAS  Google Scholar 

  100. Baba, A., Kojima, T., Hiraoka, S.: Self-assembly process of dodecanuclear Pt(II)-linked cyclic hexagon. J. Am. Chem. Soc. 137, 7664–7667 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Tateishi, T., Takahashi, S., Okazawa, A., Martí-Centelles, V., Wang, J., Kojima, T., Lusby, P.J., Sato, H., Hiraoka, S.: Navigated self-assembly of a Pd2L4 cage by modulation of an energy landscape under kinetic control. J. Am. Chem. Soc. 141, 19669–19676 (2019)

    Article  CAS  PubMed  Google Scholar 

  102. Sato, A., Ishido, Y., Fujita, M.: Remarkable stabilization of M12L24 spherical frameworks through the cooperation of 48 Pd(II)-pyridine interactions. J. Am. Chem. Soc. 131, 6064–6065 (2009)

    Article  CAS  PubMed  Google Scholar 

  103. Chichak, K.S., Cantrill, S.J., Stoddart, F.J.: Dynamic nanoscale Borromean links. Chem. Commun. 20, 3391–3393 (2005)

    Article  Google Scholar 

  104. Ayme, J.-F., Beves, J.E., Campbell, C.J., Leigh, D.A.: Probing the dynamics of the imine-based pentafoil knot and pentameric circular helicate assembly. J. Am. Chem. Soc. 141, 3605–3612 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Akhuli, B., Cera, L., Jana, B., Saha, S., Schalley, C.A., Ghosh, P.: Formation and transmetalation mechanisms of homo- and heterometallic (Fe/Zn) trinuclear triple-stranded side-by-side helicates. Inorg. Chem. 54, 4231–4242 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. Rancan, M., Rando, M., Bosi, L., Carlotto, A., Seraglia, R., Tessarolo, J., Carlotto, S., Clever, G.H., Armelao, L.: Dynamic lanthanide exchange between quadruple-stranded cages: the effect of ionic radius differences on kinetics and thermodynamics. Inorg. Chem. Front. 9, 4495–4505 (2022)

    Article  CAS  Google Scholar 

  107. Wang, L., Song, B., Khalife, S., Li, Y., Ming, L.-J., Bai, S., Xu, Y., Yu, H., Wang, M., Wang, H., Li, X.: Introducing seven transition metal ions into terpyridine-based supramolecules: self-assembly and dynamic ligand exchange study. J. Am. Chem. Soc. 142, 1811–1821 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davis, A.V., Fiedler, D., Ziegler, M., Terpin, A., Raymond, K.N.: Resolution of chiral, tetrahedral M4L6 metal-ligand hosts. J. Am. Chem. Soc. 129, 15354–15363 (2007)

    Article  CAS  PubMed  Google Scholar 

  109. Castilla, A.M., Ousaka, N., Bilbeisi, R.A., Valeri, E., Ronson, T.K., Nitschke, J.R.: High-fidelity stereochemical memory in a FeII4L4 tetrahedral capsule. J. Am. Chem. Soc. 135, 17999–18006 (2013)

    Article  CAS  PubMed  Google Scholar 

  110. Hou, Y.-J., Wu, K., Wei, Z.-W., Li, K., Lu, Y.-L., Zhu, C.-Y., Wang, J.-S., Pan, M., Jiang, J.-J., Li, G.-Q., Su, C.-Y.: Design and enantioresolution of homochiral Fe(II)−Pd(II) coordination cages from stereolabile metalloligands: stereochemical stability and enantioselective separation. J. Am. Chem. Soc. 140, 18183–18191 (2018)

    Article  CAS  PubMed  Google Scholar 

  111. Zhou, Y., Li, H., Zhu, T., Gao, T., Yan, P.: A highly luminescent chiral tetrahedral Eu4L4(L′)4 Cage: chirality induction, chirality memory, and circularly polarized luminescence. J. Am. Chem. Soc. 141, 19634–19643 (2019)

    Article  CAS  PubMed  Google Scholar 

  112. Sakata, Y., Yamamoto, R., Saito, D., Tamura, Y., Maruyama, K., Ogoshi, T., Akine, S.: Metallonanobelt: a kinetically stable shape-persistent molecular belt prepared by reversible self-assembly processes. Inorg. Chem. 57, 15500–15506 (2018)

    Article  CAS  PubMed  Google Scholar 

  113. Sakata, Y., Furukawa, Y., Akine, S.: Functionalized metallonanobelt derivatives having quinoxaline scaffold prepared from a common precursor. Tetrahedron Lett. 60, 2049–2053 (2019)

    Article  CAS  Google Scholar 

  114. Ritchens, D.T.: Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961–2002 (2005)

    Article  Google Scholar 

  115. Fujita, M., Ibukuro, F., Hagihara, H., Ogura, K.: Quantitative self-assembly of a [2]catenane from two preformed molecular rings. Nature 367, 720–723 (1994)

    Article  CAS  Google Scholar 

  116. Suzuki, K., Kawano, M., Fujita, M.: Solvato-controlled assembly of Pd3L6 and Pd4L8 coordination “Boxes.” Angew. Chem. Int. Ed. 46, 2819–2822 (2007)

    Article  CAS  Google Scholar 

  117. Ramírez, J., Stadler, A.M., Kyritsakas, N., Lehn, J.M.: Solvent-modulated reversible conversion of a [2×2]-grid into a pincer-like complex. Chem. Commun. 15, 237–239 (2007)

    Article  Google Scholar 

  118. Heo, J., Jeon, Y.-M., Mirkin, C.A.: Reversible interconversion of homochiral triangular macrocycles and helical coordination polymers. J. Am. Chem. Soc. 129, 7712–7713 (2007)

    Article  CAS  PubMed  Google Scholar 

  119. Gidron, O., Jirásek, M., Trapp, N., Ebert, M.-O., Zhang, X., Diederich, F.: Homochiral [2]Catenane and bis[2]catenane from alleno-acetylenic helicates - a highly selective narcissistic self-sorting process. J. Am. Chem. Soc. 137, 12502–12505 (2015)

    Article  CAS  PubMed  Google Scholar 

  120. Cai, L.-X., Yan, D.-N., Cheng, P.-M., Xuan, J.-J., Li, S.-C., Zhou, L.-P., Tian, C.-B., Sun, Q.-F.: Controlled self-assembly and multistimuli-responsive interconversions of three conjoined twin-cages. J. Am. Chem. Soc. 143, 2016–2024 (2021)

    Article  CAS  PubMed  Google Scholar 

  121. Saha, M.L., Pramanik, S., Schmittel, M.: Spontaneous and catalytic fusion of supramolecules. Chem. Commun. 48, 9459–9461 (2012)

    Article  CAS  Google Scholar 

  122. Bobylev, E.O., Poole, D.A., III., de Bruin, B., Reek, J.N.H.: How to prepare kinetically stable self-assembled Pt12L24 nanocages while circumventing kinetic traps. Chem. Eur. J. 27, 12667–12674 (2021)

    Article  CAS  PubMed  Google Scholar 

  123. Bobylev, E.O., de Bruin, B., Reek, J.N.H.: Catalytic formation of coordination-based self-assemblies by halide impurities. Inorg. Chem. 60, 12498–12505 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sakata, Y., Nakamura, R., Hibi, T., Akine, S.: Speed tuning of formation/dissociation of a metallorotaxane. Angew. Chem. Int. Ed. 62, e202217048 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the organizing committee of Host-Guest and Supramolecular Chemistry Society, Japan for giving her the HGCS Japan Award of Excellence 2022 and the opportunity of writing this review. This work was supported by Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Hokuriku Bank Foundation, the Kyoto Technoscience Center, the Foundation for the Promotion of Ion Engineering, the Noguchi Institute, Yazaki Memorial Foundation for Science and Technology, Inoue Science Research Award, Tokuyama Science Foundation, the Iwatani Naoji Foundation, the Asahi Glass Foundation, Tobe Maki Scholarship Foundation, and the Sumitomo Foundation. She especially thanks Prof. Shigehisa Akine for his valuable suggestions and discussion about all the research on the kinetically-controlled supramolecular systems, and Dr. Kenji Yoza for X-ray structural analysis. She expresses her gratitude for all the group members who developed the studies in this review.

Author information

Authors and Affiliations

Authors

Contributions

YS. wrote the main manuscript text and prepared all figures.

Corresponding author

Correspondence to Yoko Sakata.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a paper selected for the “SHGSC Japan Award of Excellence 2022”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakata, Y. Creation of kinetically-controlled supramolecular systems based on coordination chemistry. J Incl Phenom Macrocycl Chem 103, 161–188 (2023). https://doi.org/10.1007/s10847-023-01190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01190-5

Keywords

Navigation