Skip to main content
Log in

Synthesis of axially silicon phthalocyanine substituted with bis- (3,4-dimethoxyphenethoxy) groups, DFT and molecular docking studies

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Axially bis-substituted silicon phthalocyanine was synthesized from the reaction of 2-(3,4-dimethoxy phenyl) ethanol and SiPcCl2. The structure of the compound was justified by FT-IR, 1 H NMR, 13 C NMR, UV-Vis, and mass spectra. The conglomeration action of the phthalocyanine compound was determined by UV-visible spectra at different concentrations and in different solvents. Some parameters of this axial silicon phthalocyanine compound were investigated by computational chemistry. Structural optimization of axial silicon phthalocyanine substituted with compound, HOMO-LUMO energies and MEP maps was performed by density functional theory (DFT) studies. In addition, a chemical bond analysis of the molecule was performed with quantum theory atom in molecules (QTAIM). Finally, a molecular docking study was applied to this new phthalocyanine molecule in its binding mechanism.

Graphical Abstract

Axially bis-substituted silicon phthalocyanine was synthesized by the newly designed reaction. The structure was characterized. Some parameters of this axial silicon phthalocyanine compound were investigated and analyzes were made with DFT studies and QTAIM. Finally, molecular docking work was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Çakır, V., Arslan, T.: Synthesis and biological evaluation of new silicon(IV) phthalocyanines as carbonic anhydrase and cholinesterase inhibitors. Inorganica Chim. Acta. 530, 120678 (2022)

    Article  Google Scholar 

  2. Ağırtaş, M.S., et al.: Synthesis, characterization, and electrochemical and electrical properties of novel mono and ball-type metallophthalocyanines with four 9,9-bis(4-hydroxyphenyl)fluorene. Dalton Trans. 40, 3315–3324 (2011)

    Article  PubMed  Google Scholar 

  3. Sridevi, B.R., Hoskeri, P.A., Joseph, C.M.: Effect of annealing on the optical, structural and electrochromic properties of vacuum evaporated manganese phthalocyanine thin films. Thin Solid Films. 723, 138584 (2021)

    Article  CAS  Google Scholar 

  4. Germinario, G., Werf, I.D., Sabbatini, L.: Pyrolysis gas chromatography mass spectrometry of two green phthalocyanine pigments and their identification in paint systems. JAAP. 115, 175–183 (2015)

    CAS  Google Scholar 

  5. Ilgün, C., et al.: Novel Co and Zn-Phthalocyanine dyes with octa-carboxylic acid substituents for DSSCs. Sol. Energy. 218, 169–179 (2021)

    Article  Google Scholar 

  6. Zhou, J., et al.: Self-assembly and ionic conductivity of phthalocyanine-containing liquid-crystalline compound films. Thin Solid Films. 709, 138148 (2020)

    Article  CAS  Google Scholar 

  7. Ağırtaş, M.S.: Synthesis and characterization of novel symmetrical phthalocyanines substituted with four benzo [d] [1,3] dioxol-5-ylmethoxy groups. Inorganica Chim. Acta. 360, 2499–2502 (2007)

    Article  Google Scholar 

  8. Chen, L., et al.: Cobalt phthalocyanine as an efficient catalyst for hydrogen evolution reaction. Int. J. Hydrog Energy. 46, 19338–19346 (2021)

    Article  CAS  Google Scholar 

  9. Türkan, F., et al.: Determination of anticancer properties and inhibitory effects of some metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, alpha-glycosidase of some compounds with molecular docking study. J. Biomol. Struct. Dyn. 39, 3693–3702 (2021)

    Article  PubMed  Google Scholar 

  10. Ağırtaş, M.S.: Fluorescence properties in different solvents and synthesis of axially substituted silicon phthalocyanine bearing bis-4-tritylphenoxy units. Heterocycl. Comm. 26, 130–136 (2020)

    Article  Google Scholar 

  11. Sindelo, A., Mafukidze, D.M., Nyokong, T.: Fabrication of asymmetrical morpholine phthalocyanines conjugated chitosan-polyacrylonitrile nanofibers for improved photodynamic antimicrobial chemotherapy activity. Photodiagnosis Photody Ther. 38, 102760 (2022)

    Article  CAS  Google Scholar 

  12. Tang, F., et al.: Carboxymethyl chitosan-zinc(II) phthalocyanine conjugates: Synthesis, characterization and photodynamic antifungal therapy. Carbohydr. Polym. 235, 115949 (2020)

    Article  PubMed  CAS  Google Scholar 

  13. Zhao, Y., et al.: A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy. Dyes Pigm. 172, 107834 (2020)

    Article  CAS  Google Scholar 

  14. Zheng, B.-D., et al.: Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coord. Chem. Rev. 447, 214155 (2021)

    Article  CAS  Google Scholar 

  15. Salih Ağırtaş, M.: Highly soluble phthalocyanines with hexadeca tert-butyl substituents. Dyes Pigm. 79, 247–251 (2008)

    Article  Google Scholar 

  16. Openda, Y.I., Babu, B., Nyokong, T.: Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer. Photodiagnosis Photody Ther. 38, 102863 (2022)

    Article  CAS  Google Scholar 

  17. Ezquerra Riega, S.D., et al.: Chalcogen bearing tetrasubstituted zinc (II) phthalocyanines for CT26 colon carcinoma cells photodynamic therapy. Dyes Pigm. 201, 110110 (2022)

    Article  CAS  Google Scholar 

  18. Lamch, Å., et al.: Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis Photody Ther. 25, 480–491 (2019)

    Article  CAS  Google Scholar 

  19. Matshitse, R., et al.: Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds: Effect of symmetry and charge. Photodiagnosis Photody Ther. 37, 102705 (2022)

    Article  CAS  Google Scholar 

  20. Smith, M.R., et al.: A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition. Nucleic Acids Res. 47, 3197–3207 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tumbale, P., et al.: Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity. Nature. 506, 111–115 (2014)

    Article  PubMed  CAS  Google Scholar 

  22. Khnifira, M., et al.: A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions. Int. J. Biol. Macromol. 166, 707–721 (2021)

    Article  PubMed  CAS  Google Scholar 

  23. Kaya, S., Kaya, C.: A new equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput. Theor. Chem. 1052, 42–46 (2015)

    Article  CAS  Google Scholar 

  24. Grabowski, S.J., Ugalde, J.M.: Bond Paths Show Preferable Interactions: Ab Initio and QTAIM Studies on the X – H···π Hydrogen Bond. J. Phys. Chem. A. 114, 7223–7229 (2010)

    Article  PubMed  CAS  Google Scholar 

  25. Huang, Q.-R., Kingham, J.R., Kaltsoyannis, N.: The strength of actinide–element bonds from the quantum theory of atoms-in-molecules. Dalton Trans. 44, 2554–2566 (2015)

    Article  PubMed  CAS  Google Scholar 

  26. Abdolmaleki, A., Eskandari, K., Molavian, M.R.: Sulfonated or phosphonated membranes? DFT investigation of proton exchange in poly(oxadiazole) membranes. Polymer. 87, 181–193 (2016)

    Article  CAS  Google Scholar 

  27. Sangeetha, K., et al.: The study of inter and intramolecular hydrogen bonds of NLO crystal melaminium hydrogen malonate using DFT simulation, AIM analysis and Hirshfeld surface analysis. Mater. Today: Proc. 25, 307–315 (2020)

  28. Frisch, M.J., et al.: Gaussian 16 Rev. C.01. : Wallingford, CT. (2016)

  29. Bourass, M., et al.: DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem. Cent. J. 10, 67 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen, K., et al.: Unusual odd-electron fragments from even-electron protonated prodiginine precursors using positive-ion electrospray tandem mass spectrometry. J. Am. Soc. Mass. Spectrom. 19, 1856–1866 (2008)

    Article  PubMed  CAS  Google Scholar 

  31. Mumit, M.A., et al.: DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2, 4, 5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J. Mol. Struct. 1220, 128715 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pendás, Ã.M., Gatti, C.: 3 Quantum theory of atoms in molecules and the AIMAll software.J.C.B.A.43(2021)

  33. Bensouilah, N., et al.: Host-guest complex of N-(2-chloroethyl), N-nitroso, N′, N′-dicyclohexylsulfamid with β-cyclodextrin: Fluorescence, QTAIM analysis and structure-chemical reactivity. J. Mol. Struct. 1146, 179–190 (2017)

    Article  CAS  Google Scholar 

  34. Yildiko, Ã., et al.: Synthesis, enzymes inhibitory properties and characterization of 2- (bis (4-aminophenyl) methyl) butan-1-ol compound: Quantum simulations, and in-silico molecular docking studies. J. Indian Chem. Soc. 98, 100206 (2021)

    Article  CAS  Google Scholar 

  35. TEKEŞ, A.T., et al.: Insilico Molecular Docking Studies of THBF Compound: TD-DFT Simulations and Drug Design. JIST. 11, 2955–2966 (2021)

    Article  Google Scholar 

  36. ; Schrödinger Release 2017-3: Schrödinger Suite 2017-3 Protein Preparation Wizard, Epik, Schrödinger, L.L.C., New York, N.Y., Impact, Schrödinger, L.L.C., New York, N.Y.: 2017; LigPrep, Schrödinger, LLC, New York, NY, 2017; Prime, Schrödinger, LLC, New York, NY, 2017; QikProp,Schrödinger, LLC, New York, NY, 2017. (2017)

  37. Wang, G., et al.: Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem. 95, 103565 (2020)

    Article  PubMed  CAS  Google Scholar 

  38. BIOVIA Discovery Studio D. SYSTÈMES:. BIOVIA Corporate Europe, BIOVIA 334 Cambridge Science Park, Cambridge CB4 0WN, England. (2016). http://accelrys.com/products/collaborative-science/biovia-discovery-studio/

  39. Rad, A.S., et al.: DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 247, 119082 (2021)

    Article  CAS  Google Scholar 

  40. Karakas, A., et al.: Theoretical Diagnostics of Second and Third-order Hyperpolarizabilities of Several Acid Derivatives %. Open. Chem. J. 17, 151–156 (2019)

    Article  CAS  Google Scholar 

  41. Rahuman, M.H., et al.: Investigations on 2-(4-Cyanophenylamino) acetic acid by FT-IR,FT-Raman, NMR and UV-Vis spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui function) and molecular docking studies.Heliyon6, (2020)

  42. Tosso, R.D., et al.: The electronic density obtained from a QTAIM analysis used as molecular descriptor. A study performed in a new series of DHFR inhibitors. J. Mol. Struct. 1134, 464–474 (2017)

    Article  CAS  Google Scholar 

  43. Fuster, F., Grabowski, S.J.: Intramolecular Hydrogen Bonds: the QTAIM and ELF Characteristics. T J. Phys. Chem. A. 115, 10078–10086 (2011)

    Article  CAS  Google Scholar 

  44. Yildiko, U., Tanriverdi, A.A.: A novel sulfonated aromatic polyimide synthesis and characterization: Energy calculations, QTAIM simulation study of the hydrated structure of one unit. BKCS. 43, 822 (2022)

    CAS  Google Scholar 

  45. Jenkins, S., Morrison, I.: The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem. Phys. Lett. 317, 97–102 (2000)

    Article  CAS  Google Scholar 

  46. Yildiko, U., Tanriverdi, A.A.: Synthesis and characterization of pyromellitic dianhydride based sulfonated polyimide: Survey of structure properties with DFT and QTAIM. J. Polym. Res. 29, 1–17 (2022)

    Article  Google Scholar 

  47. Bianchi, R., et al.: Multipole-refined charge density study of diopside at ambient conditions. Phys. Chem. Miner. 32, 638–645 (2005)

    Article  CAS  Google Scholar 

  48. Kamaal, S., et al.: A new copper(II)-based layered coordination polymer: Crystal structure, topology, QTAIM analysis, experimental and theoretical magnetic properties based on DFT combined with broken-symmetry formalism (BS-DFT). Polyhedron. 193, 114881 (2021)

    Article  CAS  Google Scholar 

  49. Zhao, D.-X., Yang, Z.-Z.: Theoretical Exploration of the Potential and Force Acting on One Electron within a Molecule. J. Phys. Chem. A. 118, 9045–9057 (2014)

    Article  PubMed  CAS  Google Scholar 

  50. Zhou, H.-X., Pang, X.: Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 118, 1691–1741 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Grishina, A.M., Potemkin, A.V.: Topological Analysis of Electron Density in Large Biomolecular Systems. Curr. Drug Discov Technol. 16, 437–448 (2019)

    Article  PubMed  CAS  Google Scholar 

  52. Bader, R.F.W., Anderson, S.G., Duke, A.J.: Quantum topology of molecular charge distributions. 1. J. Am. Chem. Soc. 101, 1389–1395 (1979)

    Article  CAS  Google Scholar 

  53. ALTUN, K., et al.: Structural and spectral properties of 4-(4-(1-(4-Hydroxyphenyl)-1-phenylethyl) phenoxy) phthalonitrile: Analysis by TD-DFT method, ADME analysis and docking studies. IJCT. 5, 147–155 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Van Yüzüncü Yıl University Scientific Research Projects Unit and Science Application and Research Center for their support (FBA-2022-9776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Salih Ağirtaş.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgun, D.G., Tanriverdi, A.A., Yildiko, U. et al. Synthesis of axially silicon phthalocyanine substituted with bis- (3,4-dimethoxyphenethoxy) groups, DFT and molecular docking studies. J Incl Phenom Macrocycl Chem 102, 851–860 (2022). https://doi.org/10.1007/s10847-022-01164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01164-z

Keywords

Navigation