Skip to main content
Log in

Crystalline γ-cyclodextrin metal organic framework nano-containers for encapsulation of benzaldehyde and their host–guest interactions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The nano-porous crystals of γ-cyclodextrin MOF (CDMOF) were synthesized and encapsulated with benzaldehyde. The host–guest interactions between CDMOF and benzaldehyde were analyzed using fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and molecular docking calculations. We observed that around 13% benzaldehyde was adsorbed by the CDMOF crystals, which was supported by TGA, FTIR, DSC and XRD. The preferred inclusion geometry was identified, and the strength of these interactions was recorded. A polar carbonyl group was identified as a docking site which leads to stabilization and complex formation with glucopyranose unit of CDMOF. It was observed that the binding energy for the complex is—4.04 kcal mol−1, which indicates that complex formation is thermodynamically favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farmer, E.E., Davoine, C.: Reactive electrophile species. Curr. Opin. plant Biol. 10(4), 380–386 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. Zimniak, P.: Relationship of electrophilic stress to aging. Free Radic. Biol. Med. 51(6), 1087–1105 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. LoPachin, R.M., Gavin, T.: Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem. Res. Toxicol. 27(7), 1081–1091 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jash, A., Paliyath, G., Lim, L.-T.: Activated release of bioactive aldehydes from their precursors embedded in electrspun poly(lactic acid) nonwovens. RSC Adv. 8, 19930–19938 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lehtonen, M., Kekäläinen, S., Nikkilä, I., Kilpeläinen, P., Tenkanen, M., Mikkonen, K.S.: Active food packaging through controlled in situ production and release of hexanal. Food Chem: X 5(100074), 1–10 (2020)

    Google Scholar 

  6. Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., Bordes, C.: Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure–activity relationship) models. Front. Microbiol. 10(829), 1–23 (2019)

    Google Scholar 

  7. Kathuria, A., Pauwels, A.K., Buntinx, M., Shin, J., Harding, T.: Inclusion of ethanol in a nano-porous, bio-based metal organic framework. J. Incl. Phenom. Macrocycl. Chem. 95(1), 91–98 (2019)

    Article  CAS  Google Scholar 

  8. Schwöbel, J.A., Koleva, Y.K., Enoch, S.J., Bajot, F., Hewitt, M., Madden, J.C., Roberts, D.W., Schultz, T.W., Cronin, M.T.: Measurement and estimation of electrophilic reactivity for predictive toxicology. Chem. Rev. 111(4), 2562–2596 (2011)

    Article  PubMed  CAS  Google Scholar 

  9. LoPachin, R.M., Gavin, T.: Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation. Free Radic. Res. 50(2), 195–205 (2016)

    Article  PubMed  CAS  Google Scholar 

  10. Galan, A., Ballester, P.: Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 45(6), 1720–1737 (2016)

    Article  PubMed  CAS  Google Scholar 

  11. Al-Ghamdi, S., Kathuria, A., Abiad, M., Auras, R.: Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde. J. Cryst. Growth. 451, 72–78 (2016)

    Article  CAS  Google Scholar 

  12. Shi, C., Jash, A., Lim, L.T.: Activated release of hexanal and salicylaldehyde from imidazolidine precursors encapsulated in electrospun ethylcellulose-poly (ethylene oxide) fibers. SN Appl. Sci. 3, 385 (2021)

    Article  CAS  Google Scholar 

  13. Wang, H., Lashkari, E., Lim, H., Zheng, C., Emge, T.J., Gong, Q., Yam, K., Li, J.: The moisture-triggered controlled release of a natural food preservative from a microporous metal–organic framework. Chem. Commun. 52(10), 2129–2132 (2016)

    Article  CAS  Google Scholar 

  14. Shen, M., Liu, D., Ding, T.: Cyclodextrin-metal-organic frameworks (CD-MOFs): main aspects and perspectives in food applications. Curr. Opin. Food Sci. 41, 8–15 (2021)

    Article  CAS  Google Scholar 

  15. Montisci, F., Mazzeo, P.P., Carraro, C., Prencipe, M., Pelagatti, P., Fornari, F., Bianchi, F., Careri, M., Bacchi, A.: Dispensing essential oil components through cocrystallization: sustainable and smart materials for food preservation and agricultural applications. ACS Sustainable Chem. Eng. 10, 8388–8399 (2022)

    Article  CAS  Google Scholar 

  16. LoPachin, R.M., Geohagen, B.C., Nordstroem, L.U.: Mechanisms of soft and hard electrophile toxicities. Toxicology 418, 62–69 (2019)

    Article  PubMed  CAS  Google Scholar 

  17. Sultana, A., Kathuria, A., Gaikwad, K.K.: Metal–organic frameworks for active food packaging. Rev. Environ. Chem. Lett. 20, 1479–1495 (2022)

    Article  CAS  Google Scholar 

  18. Moosavi, S.M., Nandy, A., Jablonka, K.M., Ongari, D., Janet, J.P., Boyd, P.G., Lee, Y., Smit, B., Kulik, H.J.: Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nagarajan, V., Kizhaeral, S., Subramanian, M., Rajendran, S., Ranjan, J.: Encapsulation of a volatile biomolecule (Hexanal) in cyclodextrin metal-organic frameworks for slow release and its effect on preservation of mangoes. ACS Food Sci. Technol. 1(10), 1936–1944 (2021)

    Article  CAS  Google Scholar 

  20. Weiss-Errico, M.J., O’Shea, K.E.: Enhanced host–guest complexation of short chain perfluoroalkyl substances with positively charged β-cyclodextrin derivatives. J. Incl. Phenom. Macrocycl. Chem. 95(1), 111–117 (2019)

    Article  CAS  Google Scholar 

  21. Struble, M.D., Kelly, C., Siegler, M.A., Lectka, T.: Search for a strong, virtually “No-Shift” hydrogen bond: a cage molecule with an exceptional OH···F interaction. Angewandte Communi. Int. Edition 53, 8924–8928 (2014)

    Article  CAS  Google Scholar 

  22. Gorman, M.: The evidence from infrared spectroscopy for hydrogen bonding: a case history of the correlation and interpretation of data. J. Chem. Educ. 34, 304 (1957)

    Article  CAS  Google Scholar 

  23. Isaev, A.N.: Intermolecular charge transfer as evidence for unusual O-H⋯ C (sp3) hydrogen bond. Comput. Theor. Chem. 1090, 180–192 (2016)

    Article  CAS  Google Scholar 

  24. Beck, J.F., Mo, Y.: How resonance assists hydrogen bonding interactions: an energy decomposition analysis. J. Comput. Chem. 28(1), 455–466 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. Parthasarathi, R., Subramanian, V.: Characterization of hydrogen bonding: from Van Der Waals interactions to covalency. In: Grabowski, S.J. (ed.) Hydrogen bonding - New insights, pp. 1–50. Springer, The Netherlands (2006)

    Google Scholar 

  26. Liu, L., Li, X.S., Song, K.S., Guo, Q., X,: PM3 studies on the complexation of α-cyclodextrin with benzaldehyde and acetophenone. J. Mol. Struct: THEOCHEM 531, 127–134 (2000)

    Article  CAS  Google Scholar 

  27. Zhu, G., Zhu, G., Xiao, Z.: A review of the production of slow-release flavor by formation inclusion complex with cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 95(1), 17–33 (2009)

    Article  Google Scholar 

  28. Tian, S.J., Xi, G.X., Cheng, Q.T., Lou, X.D., Li, J.H.: Mechanism and kinetics of thermal dissociation of inclusion complex of benzaldehyde with β-cyclodextrin. J. Therm. Anal. Calorim. 53, 825–833 (1998)

    Article  CAS  Google Scholar 

  29. Teixeira, L.R., Sinisterra, R.D., Vieira, R.P., Doretto, M.C., Beraldo, H.: Inclusion of benzaldehyde semicarbazone into β-cyclodextrin produces a very effective anticonvulsant formulation. J. Incl. Phenom. Macrocycl. Chem. 47(1), 77–82 (2003)

    Article  CAS  Google Scholar 

  30. Yang, Z., Chai, K., Ji, H.: Selective inclusion and separation of cinnamaldehyde and benzaldehyde by insoluble β-cyclodextrin polymer. Sep. Purif Technol. 80(2), 209–216 (2011)

    Article  CAS  Google Scholar 

  31. Li, H., Shi, L., Li, C., Fu, X., Huang, Q., Zhang, B.: Metal–organic framework based on α-cyclodextrin gives high ethylene gas adsorption capacity and storage stability. ACS Appl. Mater. Interfaces. 12(30), 34095–34104 (2020)

    Article  PubMed  CAS  Google Scholar 

  32. Hu, Z., Li, S., Wang, S., Zhang, B., Huang, Q.: Encapsulation of menthol into cyclodextrin metal-organic frameworks: preparation, structure characterization and evaluation of complexing capacity. Food Chem. 338, 127839 (2021)

    Article  PubMed  CAS  Google Scholar 

  33. Lashkari, E., Wang, H., Liu, L., Li, J., Yam, K.: Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem. 221, 926–935 (2017)

    Article  PubMed  CAS  Google Scholar 

  34. Zaitoon, A., Luo, X., Lim, L.T.: Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri-food products: a review. Compr. Rev. Food Sci. Food Saf. 21(1), 541–579 (2022)

    Article  PubMed  CAS  Google Scholar 

  35. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Trott, O., Olson, A.J., Vina, A.: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010)

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44(6), 1272–1276 (2011)

    Article  CAS  Google Scholar 

  39. Zhang, B., Huang, J., Liu, K., Zhou, Z., Jiang, L., Shen, Y., Zhao, D.: Biocompatible cyclodextrin-based metal–organic frameworks for long-term sustained release of fragrances. Ind. Eng. Chem. Res. 58(43), 19767–19777 (2019)

    Article  CAS  Google Scholar 

  40. Kathuria, A., Harding, T., Auras, R., Kivy, M.B.: Encapsulation of hexanal in bio-based cyclodextrin metal organic framework for extended release. J. Incl. Phenom. Macrocycl. Chem. 101(1), 121–130 (2021)

    Article  CAS  Google Scholar 

  41. He, Y., Zhang, W., Guo, T., Zhang, G., Qin, W., Zhang, L., Wang, C., Zhu, W., Yang, M., Hu, X., Singh, V.: Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan. Acta Pharm. sinica B. 9(1), 97–106 (2019)

    Article  Google Scholar 

  42. Jeffrey, G.A.: An introduction to hydrogen bonding, pp. 220–225. Oxford University Press, New York (1997)

    Google Scholar 

  43. Thompson, M.A.: Molecular docking using Arguslab, an efficient shape-based search algorithm and the a score scoring function. ACS Meeting, Philadelphia (2004)

    Google Scholar 

  44. Bitencourt-Ferreira, G., Azevedo, W.F.: Molecular docking simulations with ArgusLab. In: Docking screens for drug discovery, pp. 203–220. Humana, New York (2019)

    Chapter  Google Scholar 

  45. Li, Y., Zhang, H., Liu, Q.: FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 86, 51–55 (2012)

    Article  CAS  Google Scholar 

  46. Smaldone, R.A., Forgan, R.S., Furukawa, H., Gassensmith, J.J., Slawin, A.M., Yaghi, O.M., Stoddart, J.F.: Metal–organic frameworks from edible natural products. Angew. Chem. Int. Ed. 49(46), 8630–8634 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ajay Kathuria is thankful for the Orfalea funds for the release time.

Author information

Authors and Affiliations

Authors

Contributions

Authors conceptualized the study jointly. AK organized, coordinated, conducted thermal & diffraction spectroscopy studies, and led the manuscript writing. YSL contributed towards the encapsulation and electron microscopy studies. JMS contributed towards infrared spectroscopic experiments and analysis. MK led computational studies, host–guest interactions, and writing that section.

Corresponding author

Correspondence to Ajay Kathuria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathuria, A., Lee, Y.S., Shin, J. et al. Crystalline γ-cyclodextrin metal organic framework nano-containers for encapsulation of benzaldehyde and their host–guest interactions. J Incl Phenom Macrocycl Chem 102, 781–790 (2022). https://doi.org/10.1007/s10847-022-01158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01158-x

Keywords

Navigation