Skip to main content
Log in

The recent process and future of perovskite solar cells materials

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) provide attractive prospects for the photovoltaic industry, but the harsh preparation conditions and stability of perovskite materials are still the biggest obstacles to the industrialization of PSCs. This review paper compares the differences in composition and working principle between dye-sensitized solar cells and PSC. It also reviews the optimization and development of electron transport layer, perovskite absorbers and hole transport layer in recent years. By analyzing the crystal morphology, grain size, internal and surface defects of each layer, it also highlights that surface/bulk passivation, composition and interface engineering are used to improve the photoelectric conversion efficiency and the stability of devices. At the same time, the research and development direction of PSC is prospected. It is believed that the industrialization of PSC will be accelerated through the efforts of scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Z., Wang, L., Han, J., Zeng, F., Liu, G., Xie, X.: Improving the performance of lead-acetate-based perovskite solar cells using solvent controlled crystallization process. Org. Electron. (2020). https://doi.org/10.1016/j.orgel.2019.105552

    Article  Google Scholar 

  3. Xu, T., Zou, K., Sun, X., Wan, Z., Tang, H., Zhang, Y., Chen, L., Qiao, Q., Huang, W.: Effect of antisolvent treatment on PbI2 films for high performance carbon-based perovskite solar cells. Mater. Lett. (2020). https://doi.org/10.1016/j.matlet.2020.128157

    Article  Google Scholar 

  4. Wu, F., Pathak, R., Qiao, Q.: Origin and alleviation of J–V hysteresis in perovskite solar cells: a short review. Catal. Today 374, 86–101 (2021). https://doi.org/10.1016/j.cattod.2020.12.025

    Article  CAS  Google Scholar 

  5. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  6. Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, Md.K., Grätzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). https://doi.org/10.1021/ja307789s

    Article  CAS  PubMed  Google Scholar 

  7. Laban, W.A., Etgar, L.: Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013). https://doi.org/10.1039/C3EE42282H

    Article  CAS  Google Scholar 

  8. Jeong, M., Choi, I.W., Go, E.M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H.W., Lee, J., Bae, J.-H., Kwak, S.K., Kim, D.S., Yang, C.: Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020). https://doi.org/10.1126/science.abb7167

    Article  CAS  PubMed  Google Scholar 

  9. Meng, F., Zhou, Y., Gao, L., Li, Y., Liu, A., Li, Y., Zhang, C., Fan, M., Wei, G., Ma, T.: Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells. Mater. Today Energy (2021). https://doi.org/10.1016/j.mtener.2020.100590

    Article  Google Scholar 

  10. Li, J., Xia, R., Qi, W., Zhou, X., Cheng, J., Chen, Y., Hou, G., Ding, Y., Li, Y., Zhao, Y., Zhang, X.: Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power Sources (2021). https://doi.org/10.1016/j.jpowsour.2020.229313

    Article  Google Scholar 

  11. Naveen, K., Rani, J., Kurchania, R.: Advancement in CsPbBr3 inorganic perovskite solar cells: fabrication, efficiency and stability. Sol. Energy 221, 197–205 (2021). https://doi.org/10.1016/j.solener.2021.04.042

    Article  CAS  Google Scholar 

  12. Matondo, J.T., Maurice, D.M., Chen, Q., Bai, L., Guli, M.: Inorganic copper-based hole transport materials for perovskite photovoltaics: challenges in normally structured cells, advances in photovoltaic performance and device stability. Sol. Energy Mater. Sol. Cells. (2021). https://doi.org/10.1016/j.solmat.2021.111011

    Article  Google Scholar 

  13. Zhou, Q., Ma, W., Zhang, Z., Liu, Y., Zhang, H., Mao, Y.: Double-layered hole transport material of CuInS2/Spiro for highly efficient and stable perovskite solar cells. Org. Electron. (2021). https://doi.org/10.1016/j.orgel.2021.106249

    Article  Google Scholar 

  14. Hu, J., Xiong, X., Guan, W., Long, H.: Recent advances in carbon nanomaterial-optimized perovskite solar cells. Mater. Today Energy (2021). https://doi.org/10.1016/j.mtener.2021.100769

    Article  Google Scholar 

  15. Yang, Q., Dettori, R., Yuan, G., Anderson, L.R.: A perovskite solar cell owing very high stabilities and power conversion efficiencies. Sol. Energy 201, 541–546 (2020). https://doi.org/10.1016/j.solener.2020.02.085

    Article  CAS  Google Scholar 

  16. Mohseni, H.R., Dehghanipour, M., Dehghan, N., Tamaddon, F., Ahmadi, M., Sabet, M., Behjat, A.: Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 213, 59–66 (2021). https://doi.org/10.1016/j.solener.2020.11.017

    Article  CAS  Google Scholar 

  17. Liu, W., Ma, H., Walsh, A.: Advance in photonic crystal solar cells. Renew. Sustain. Energy Rev. 116, 109436 (2019). https://doi.org/10.1016/j.rser.2019.109436

    Article  CAS  Google Scholar 

  18. Yang, X., Zhao, L., Wang, S., Li, J., Chi, B.: Recent progress of g-C3N4 applied in solar cells. J. Materiomics 7, 728–741 (2021). https://doi.org/10.1016/j.jmat.2021.01.004

    Article  Google Scholar 

  19. Xiang, H., Liu, P., Wang, W., Ran, R., Zhou, W., Shao, Z.: Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. Chem. Eng. J. 420, 127599 (2021). https://doi.org/10.1016/j.cej.2020.127599

    Article  CAS  Google Scholar 

  20. Olaleru, S.A., Kirui, J.K., Wamwangi, D., Roro, K.T., Mwakikunga, B.: Perovskite solar cells: the new epoch in photovoltaics. Sol. Energy 196, 295–309 (2020). https://doi.org/10.1016/j.solener.2019.12.025

    Article  CAS  Google Scholar 

  21. Hardin, B.E., Snaith, H.J., McGehee, M.D.: The renaissance of dye-sensitized solar cells. Nat. Photonics 6, 162–169 (2012). https://doi.org/10.1038/nphoton.2012.22

    Article  CAS  Google Scholar 

  22. Wei, J., Zhao, Q., Li, H., Shi, C., Tian, J., Cao, G., Yu, D.: Perovskite solar cells: Promise of photovoltaics. Sci. Sin. Technol. 44, 801–821 (2014). https://doi.org/10.1360/N092014-00135

    Article  Google Scholar 

  23. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  PubMed  Google Scholar 

  24. Jin, L., Zhai, J., Heng, L., Wei, T., Wen, L., Jiang, L., Zhao, X., Zhang, X.: Bio-inspired multi-scale structures in dye-sensitized solar cell. J. Photochem. Photobiol. C 10, 149–158 (2009). https://doi.org/10.1016/j.jphotochemrev.2009.10.002

    Article  CAS  Google Scholar 

  25. Pelicano, C.M., Yanagi, H.: Effect of rubrene: P3HT bilayer on photovoltaic performance of perovskite solar cells with electrodeposited ZnO nanorods, Journal of Energy. Chemistry 27, 455–462 (2018). https://doi.org/10.1016/j.jechem.2017.11.018

    Article  Google Scholar 

  26. Chunlin, F., Xing, S., He, Y., He, J., Li, J.: Current status of electron transport layer in perovskite solar cells. J. Synth. Crystals 50, 959–966 (2021). https://doi.org/10.16553/j.cnki.issn1000-985x.20210427.001

  27. Guo, X., Yang, Y., Luo, Y., Ma, S., Zhu, C., Zhu, L.: Advances of electron transport materials in perovskite solar cells: synthesis and application. Prog. Chem. 33, 281–302 (2021). https://doi.org/10.7536/PC200515

    Article  Google Scholar 

  28. Li, R., Huo, X., Han, X., Wang, Z., Zhang, M., Guo, M.: Facile synthesis of ordered Nb2O5 coated TiO2 nanorod arrays for efficient perovskite solar cells. Appl. Surf. Sci. 542, 148728 (2021). https://doi.org/10.1016/j.apsusc.2020.148728

    Article  CAS  Google Scholar 

  29. Jin, J., Li, H., Bi, W., Chen, C., Zhang, B., Xu, L., Dong, B., Song, H., Dai, Q.: Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3. Sol. Energy 198, 187–193 (2020). https://doi.org/10.1016/j.solener.2020.01.048

    Article  CAS  Google Scholar 

  30. Wang, S., Liu, B., Zhu, Y., Ma, Z., Liu, B., Miao, X., Ma, R., Wang, C.: Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer. Sol. Energy 169, 335–342 (2018). https://doi.org/10.1016/j.solener.2018.05.005

    Article  CAS  Google Scholar 

  31. Xia, G., Liu, H., Zhao, X., Dong, X., Wang, S., Li, X.: Seeding-method-processed anatase TiO2 film at low temperature for efficient planar perovskite solar cell. Chem. Eng. J. 370, 1111–1118 (2019). https://doi.org/10.1016/j.cej.2019.03.257

    Article  CAS  Google Scholar 

  32. Khan, J., Ur Rahman, N., Khan, W.U., Hayat, A., Yang, Z., Ahmed, G., Akhtar, M.N., Tong, S., Chi, Z., Wu, M.: Multi-dimensional anatase TiO2 materials: Synthesis and their application as efficient charge transporter in perovskite solar cells. Sol. Energy. 184, 323–330 (2019). https://doi.org/10.1016/j.solener.2019.04.020

    Article  CAS  Google Scholar 

  33. Liao, Y.-H., Chang, Y.-H., Lin, T.-H., Chan, S.-H., Lee, K.-M., Hsu, K.-H., Hsu, J.-F., Wu, M.-C.: Boosting the power conversion efficiency of perovskite solar cells based on Sn doped TiO2 electron extraction layer via modification the TiO2 phase junction. Sol. Energy 205, 390–398 (2020). https://doi.org/10.1016/j.solener.2020.05.039

    Article  CAS  Google Scholar 

  34. Lifeng, Z., Jiangjian, S., Dongmei, L., Qingbo, M.: Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells. Acta Chim. Sinica. 73, 261 (2015). https://doi.org/10.6023/A14110823

    Article  CAS  Google Scholar 

  35. el Haimeur, A., Makha, M., Bakkali, H., González-Leal, J.M., Blanco, E., Dominguez, M., Voitenko, Z.V.: Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer. Sol. Energy 195, 475–482 (2020). https://doi.org/10.1016/j.solener.2019.11.094

    Article  CAS  Google Scholar 

  36. Abdi-Jalebi, M., Dar, M.I., Sadhanala, A., Senanayak, S.P., Giordano, F., Zakeeruddin, S.M., Grätzel, M., Friend, R.H.: Impact of a mesoporous titania–perovskite interface on the performance of hybrid organic–inorganic perovskite solar cells. J. Phys. Chem. Lett. 7, 3264–3269 (2016). https://doi.org/10.1021/acs.jpclett.6b01617

    Article  CAS  PubMed  Google Scholar 

  37. Mei, Y., Liu, H., Li, X., Wang, S.: Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. J. Alloys Compd. 866, 158079 (2021). https://doi.org/10.1016/j.jallcom.2020.158079

    Article  CAS  Google Scholar 

  38. Quy, H.V., Truyen, D.H., Kim, S., Bark, C.W.: Facile synthesis of spherical TiO2 hollow nanospheres with a diameter of 150 nm for high-performance mesoporous perovskite solar cells. Materials (2021). https://doi.org/10.3390/ma14030629

    Article  PubMed  PubMed Central  Google Scholar 

  39. Seyed-Talebi, S.M., Kazeminezhad, I.: Performance improvement of fully ambient air fabricated perovskite solar cells in an anti-solvent process using TiO2 hollow spheres. J. Colloid Interfaces Sci. 562, 125–132 (2020). https://doi.org/10.1016/j.jcis.2019.12.004

    Article  CAS  Google Scholar 

  40. Kanjana, N., Maiaugree, W., Poolcharuansin, P., Laokul, P.: Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres. J. Mater. Sci. Technol. 48, 105–113 (2020). https://doi.org/10.1016/j.jmst.2020.03.013

    Article  Google Scholar 

  41. Jiang, Q., Sheng, X., Li, Y., Feng, X., Xu, T.: Rutile TiO2 nanowire-based perovskite solar cells. Chem. Commun. 50, 14720–14723 (2014). https://doi.org/10.1039/C4CC07367C

    Article  CAS  Google Scholar 

  42. Wang, W., He, Y., Qi, L.: High-efficiency colorful perovskite solar cells using TiO2 nanobowl arrays as a structured electron transport layer. Sci. China Mater. 63, 35–46 (2020). https://doi.org/10.1007/s40843-019-9452-1

    Article  CAS  Google Scholar 

  43. Chavan, R.D., Yadav, P., Nimbalkar, A., Bhoite, S.P., Bhosale, P.N., Kook Hong, C.: Ruthenium doped mesoporous titanium dioxide for highly efficient, hysteresis-free and stable perovskite solar cells. Sol. Energy 186, 156–165 (2019). https://doi.org/10.1016/j.solener.2019.04.098

    Article  CAS  Google Scholar 

  44. Duan, Y., Zhao, G., Liu, X., Ma, J., Chen, S., Song, Y., Pi, X., Yu, X., Yang, D., Zhang, Y., Guo, F.: Low-temperature processed tantalum/niobium co-doped TiO2 electron transport layer for high-performance planar perovskite solar cells. Nanotechnology 32, 1–11 (2021). https://doi.org/10.1088/1361-6528/abeb37

    Article  CAS  Google Scholar 

  45. Ding, B., Zhao, X., Wang, S., Shan, X., Chen, Z., Deng, Z., Tao, R., Shao, J., Meng, G., Fang, X.: Mechanism of improving the performance of perovskite solar cells through alkali metal bis(trifluoromethanesulfonyl)imide modifying mesoporous titania electron transport layer. J. Power Sources 484, 229275 (2021). https://doi.org/10.1016/j.jpowsour.2020.229275

    Article  CAS  Google Scholar 

  46. Meng, X., Chi, K., Li, Q., Cao, Y., Song, G., Liu, B., Yang, H., Fu, W.: Interfacial modification of mesoporous TiO2 films with PbI2-ethanolamine-dimethyl sulfoxide solution for CsPbIBr2 perovskite solar cells. Nanomaterials (2020). https://doi.org/10.3390/nano10050962

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bao, W., Ichimura, M.: Band offsets at the ZnO/Cu2ZnSnS4 interface based on the first principles calculation. Jpn. J. Appl. Phys. 52, 61203 (2013). https://doi.org/10.7567/jjap.52.061203

    Article  Google Scholar 

  48. Wang, B., Li, N., Yang, L., Dall’Agnese, C., Jena, A.K., Sasaki, S., Miyasaka, T., Tamiaki, H., Wang, X.-F.: Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. J. Am. Chem. Soc. 143, 2207–2211 (2021). https://doi.org/10.1021/jacs.0c12786

    Article  CAS  PubMed  Google Scholar 

  49. Luo, Q., Zhang, C., Deng, X., Zhu, H., Li, Z., Wang, Z., Chen, X., Huang, S.: Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces. 9, 34821–34832 (2017). https://doi.org/10.1021/acsami.7b08489

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, W.-L., Zhou, W., Ying, J.-F., Yang, T.-Y., Gao, Y.-M.: Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers. J. Inorg. Mater. 32(1), 96–100 (2017)

    Article  Google Scholar 

  51. Hossain, M.I., Yumnam, N., Qarony, W., Salleo, A., Wagner, V., Knipp, D., Tsang, Y.H.: Non-resonant metal-oxide metasurfaces for efficient perovskite solar cells. Sol. Energy 198, 570–577 (2020). https://doi.org/10.1016/j.solener.2020.01.082

    Article  CAS  Google Scholar 

  52. Kang, J., Han, K., Sun, X., Zhang, L., Huang, R., Ismail, I., Wang, Z., Ding, C., Zha, W., Li, F., Luo, Q., Li, Y., Lin, J., Ma, C.-Q.: Suppression of Ag migration by low-temperature sol-gel zinc oxide in the Ag nanowires transparent electrode-based flexible perovskite solar cells. Org. Electron. 82, 105714 (2020). https://doi.org/10.1016/j.orgel.2020.105714

    Article  CAS  Google Scholar 

  53. Sharda, P., Chawla, K., Yadav, D.K., Singh, V., Jain, I.P., Lal, C.: Electronic structure and surface morphology of P3HT/MAPbI2Cl/GO-ZnO np’s thin films for PSCs. Mater. Today Proc. 42, 1682–1684 (2021). https://doi.org/10.1016/j.matpr.2020.08.047

    Article  CAS  Google Scholar 

  54. Khan, U., Iqbal, T., Khan, M., Wu, R.: SnO2/ZnO as double electron transport layer for halide perovskite solar cells. Sol. Energy 223, 346–350 (2021). https://doi.org/10.1016/j.solener.2021.05.059

    Article  CAS  Google Scholar 

  55. Ouslimane, T., Et-taya, L., Elmaimouni, L., Benami, A.: Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon 7, e06379 (2021). https://doi.org/10.1016/j.heliyon.2021.e06379

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khan, F., Kim, J.H.: Enhanced charge-transportation properties of low-temperature processed Al-doped ZnO and its impact on PV cell parameters of organic-inorganic perovskite solar cells. Solid-State Electron. 164, 107714 (2020). https://doi.org/10.1016/j.sse.2019.107714

    Article  CAS  Google Scholar 

  57. Kumar, A.M., Peter, I.J., Ramachandran, K., Mayandi, J., Jayakumar, K.: Influence of Al-Cu doping on the efficiency of BiFeO3 based perovskite solar cell (PSC). Mater. Today Proc. 35, 62–65 (2021). https://doi.org/10.1016/j.matpr.2019.05.454

    Article  CAS  Google Scholar 

  58. Kang, J.H., Park, Y.J., Khan, Y., Ahn, Y., Seo, J.H., Walker, B.: Cationic polyelectrolytes as convenient electron extraction layers in perovskite solar cells. Dyes Pigm. 182, 108634 (2020). https://doi.org/10.1016/j.dyepig.2020.108634

    Article  CAS  Google Scholar 

  59. Lee, J.H., Jin, I.S., Jung, J.W.: Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability. Chem. Eng. J. 420, 129678 (2021). https://doi.org/10.1016/j.cej.2021.129678

    Article  CAS  Google Scholar 

  60. Chen, X., Shi, Z., Pan, G., Zhu, J., Hu, J., Wu, Y., Tian, Y., Li, X., Xu, W.: Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Mater. Today Energy 21, 100724 (2021). https://doi.org/10.1016/j.mtener.2021.100724

    Article  CAS  Google Scholar 

  61. Pylnev, M., Su, T.-S., Wei, T.C.: Titania augmented with TiI4 as electron transporting layer for perovskite solar cells. Appl. Surf. Sci. 549, 149224 (2021). https://doi.org/10.1016/j.apsusc.2021.149224

    Article  CAS  Google Scholar 

  62. Chen, J., Zhang, J., Huang, C., Bi, Z., Xu, X., Yu, H.: SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar cells. Chem. Eng. J. 410, 128436 (2021). https://doi.org/10.1016/j.cej.2021.128436

    Article  CAS  Google Scholar 

  63. Zaky, A.A., Christopoulos, E., Gkini, K., Arfanis, M.K., Sygellou, L., Kaltzoglou, A., Stergiou, A., Tagmatarchis, N., Balis, N., Falaras, P.: Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer. Appl. Catal. B 284, 119714 (2021). https://doi.org/10.1016/j.apcatb.2020.119714

    Article  CAS  Google Scholar 

  64. Yuan, W.S.C., Qi, Y., Jin, J., Dong, B.: Study on the performance of planar perovskite solar cells with interface modified SnO2 by NH4I. Chin. J. Colloid Polym. 39, 26–29 (2021). https://doi.org/10.13909/j.cnki.1009-1815.2021.01.007

    Article  Google Scholar 

  65. Lee, J.-H., Lee, D.G., Jung, H.S., Lee, H.H., Kim, H.-K.: ITO and electron transport layer-free planar perovskite solar cells on transparent Nb-doped anatase TiO2-x electrodes. J. Alloys Compd. 845, 155531 (2020). https://doi.org/10.1016/j.jallcom.2020.155531

    Article  CAS  Google Scholar 

  66. de Roo, J., Ibáñez, M., Geiregat, P., Nedelcu, G., Walravens, W., Maes, J., Martins, J.C., van Driessche, I., Kovalenko, M.V., Hens, Z.: Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016). https://doi.org/10.1021/acsnano.5b06295

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, M., Ye, M., Wang, W., Ma, C., Wang, S., Liu, Q., Lian, T., Huang, J., Lin, Z.: Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high-efficiency perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.202000999

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ding, X.K., Li, X.M., Gao, X.D., de Zhang, S., di Huang, Y., Li, H.R.: Optical and electrical properties of CH3NH3PbI3 perovskite thin films transformed from PbO-PbI2 hybrid films. Acta Physico-Chim. Sin. 31, 576–582 (2015). https://doi.org/10.3866/PKU.WHXB201501201

    Article  CAS  Google Scholar 

  69. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  70. Suresh Kumar, N., Chandra Babu Naidu, K.: A review on perovskite solar cells (PSCs), materials and applications. J. Materiomics 7(5), 940–956 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

    Article  Google Scholar 

  71. Si, H., Xu, C., Ou, Y., Zhang, G., Fan, W., Xiong, Z., Kausar, A., Liao, Q., Zhang, Z., Sattar, A., Kang, Z., Zhang, Y.: Dual-passivation of ionic defects for highly crystalline perovskite. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104320

    Article  Google Scholar 

  72. Aydin, E., de Bastiani, M., de Wolf, S.: Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019). https://doi.org/10.1002/adma.201900428

    Article  CAS  Google Scholar 

  73. Liu, C., Huang, L., Zhou, X., Wang, X., Yao, J., Liu, Z., Liu, S.F., Ma, W., Xu, B.: An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Sci. Bull. (2021). https://doi.org/10.1016/j.scib.2021.03.018

    Article  Google Scholar 

  74. Godding, J.S.W., Ramadan, A.J., Lin, Y.-H., Schutt, K., Snaith, H.J., Wenger, B.: Oxidative passivation of metal halide perovskites. Joule 3, 2716–2731 (2019). https://doi.org/10.1016/j.joule.2019.08.006

    Article  CAS  Google Scholar 

  75. Srivastava, M., Singh, P.K., Singh, R.C.: Comparative study of PSCs formed by one step and sequential deposition of CH3NH3PbI3 using PEDOT: PSS as HTM. Mater. TodayProc. (2021). https://doi.org/10.1016/j.matpr.2021.01.338

    Article  Google Scholar 

  76. Yang, L., Han, G., Chang, Y., Zhang, Y., Xiao, Y.: Enhanced efficiency and stability of perovskite solar cells by synergistic effect of magnesium acetate introducing into CH3NH3PbI3. Mater. Sci. Semicond. Process. 104, 104671 (2019). https://doi.org/10.1016/j.mssp.2019.104671

    Article  CAS  Google Scholar 

  77. Mohanty, I., Mangal, S., Jana, S., Singh, U.P.: Stability factors of perovskite (CH3NH3PbI3) thin films for solar cell applications: a study. Mater. Today Proc. 39, 1829–1832 (2021). https://doi.org/10.1016/j.matpr.2020.06.183

    Article  CAS  Google Scholar 

  78. Qi, X., Liu, G., Wang, D., Zhu, N., Zhang, Y., Zhang, Z., Wu, C., Li, X., Luo, W., Li, Y., Hu, H., Chen, Z., Xiao, L., Wang, S., Qu, B.: Stable power output (PCE > 19%) of planar perovskite solar cells with PbCl2 modification at the interface of SnO2/CH3NH3PbI3. Org. Electron. 74, 52–58 (2019). https://doi.org/10.1016/j.orgel.2019.06.048

    Article  CAS  Google Scholar 

  79. Torres, J., Sanchez-Diaz, J., Rivas, J.M., de la Torre, J., Zarazua, I., Esparza, D.: Electrical properties and J–V modeling of perovskite (CH3NH3PbI3) solar cells after external thermal exposure. Sol. Energy 222, 95–102 (2021). https://doi.org/10.1016/j.solener.2021.05.014

    Article  CAS  Google Scholar 

  80. Wu, C., Li, H., Yan, Y., Chi, B., Pu, J., Li, J., Sanghadasa, M., Priya, S.: Cost-effective sustainable-engineering of CH3NH3PbI3 perovskite solar cells through slicing and restacking of 2D layers. Nano Energy 36, 295–302 (2017). https://doi.org/10.1016/j.nanoen.2017.04.034

    Article  CAS  Google Scholar 

  81. Rafieh, A.I., Ekanayake, P., Wakamiya, A., Nakajima, H., Lim, C.M.: Enhanced performance of CH3NH3PbI3-based perovskite solar cells by tuning the electrical and structural properties of mesoporous TiO2 layer via Al and Mg doping. Sol. Energy 177, 374–381 (2019). https://doi.org/10.1016/j.solener.2018.11.024

    Article  CAS  Google Scholar 

  82. Liu, C., Li, W., Zhang, C., Ma, Y., Fan, J., Ma, Y.: All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 140(11), 3825–3828 (2018)

    Article  CAS  Google Scholar 

  83. Zeng, Z., Zhang, J., Gan, X., Sun, H., Shang, M., Hou, D., Lu, C., Chen, R., Zhu, Y., Han, L.: In situ grain boundary functionalization for stable and efficient inorganic CsPbI2Br perovskite solar cells. Adv. Energy Mater. 1801050, 1–8 (2018). https://doi.org/10.1002/aenm.201801050

    Article  CAS  Google Scholar 

  84. Wang, Y., Zhang, T., Kan, M., Zhao, Y.: Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. (2018). https://doi.org/10.1021/jacs.8b07927

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yan, L., Xue, Q., Liu, M., Zhu, Z., Tian, J., Li, Z., Chen, Z.: Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv. Mater. 30(33), 1802509 (2018). https://doi.org/10.1002/adma.201802509

    Article  CAS  Google Scholar 

  86. Stern, A., Aharon, S., Binyamin, T., Karmi, A., Rotem, D., Etgar, L., Porath, D.: Electrical characterization of individual cesium lead halide perovskite nanowires using conductive AFM. Adv. Mater. 32, 1907812 (2020). https://doi.org/10.1002/adma.201907812

    Article  CAS  Google Scholar 

  87. Aharon, S., Etgar, L.: Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 16, 3230–3235 (2016). https://doi.org/10.1021/acs.nanolett.6b00665

    Article  CAS  PubMed  Google Scholar 

  88. Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014). https://doi.org/10.1038/nnano.2014.181

    Article  CAS  PubMed  Google Scholar 

  89. Ding, X.K., Li, X.M., Gao, X.D., de Zhang, S., di Huang, Y., Li, H.R.: Optical and electrical properties of CH3NH3PbI3 perovskite thin films transformed from PbO-PbI2 hybrid films. Wuli Huaxue Xuebao (Acta Physico-Chim. Sin.) 31, 576–582 (2015). https://doi.org/10.3866/PKU.WHXB201501201

    Article  CAS  Google Scholar 

  90. Givalou, L., Antoniadou, M., Kaltzoglou, A., Falaras, P.: High performance solid state solar cells incorporating CdS quantum dots and CH3NH3PbI3 perovskite. Mater. Today Proc. 19, 79–85 (2019). https://doi.org/10.1016/j.matpr.2019.07.661

    Article  CAS  Google Scholar 

  91. Jarwal, D.K., Kumar, A., Mishra, A.K., Ratan, S., Upadhyay, R.K., Kumar, C., Mukherjee, B., Jit, S.: Fabrication and TCAD validation of ambient air-processed ZnO NRs/CH3NH3PbI3/spiro-OMeTAD solar cells. Superlattices Microstruct. 143, 106540 (2020). https://doi.org/10.1016/j.spmi.2020.106540

    Article  CAS  Google Scholar 

  92. Abdulrahman, S., Wang, C., Cao, C., Zhang, C., Yang, J., Jiang, L.: Improvement of CH3NH3PbI3 thin film using the additive 1,8-diiodooctane for planar heterojunction perovskite cells. Physica B 522, 43–47 (2017). https://doi.org/10.1016/j.physb.2017.07.065

    Article  CAS  Google Scholar 

  93. Wang, K., Liu, C., Du, P., Chen, L., Zhu, J., Karim, A., Gong, X.: Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3-xClx layer. Org. Electron. 21, 19–26 (2015). https://doi.org/10.1016/j.orgel.2015.02.023

    Article  CAS  Google Scholar 

  94. Liu, D., Li, Y., Shi, B., Yao, X., Fan, L., Zhao, S., Liang, J., Ding, Y., Wei, C., Zhang, D., Zhao, Y., Zhang, X.: Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: The role of CH3NH3I concentration. Sol. Energy 147, 222–227 (2017). https://doi.org/10.1016/j.solener.2017.03.035

    Article  CAS  Google Scholar 

  95. Li, D.: Preparation of organolead halide perovskite films and studies on photoelectric properties (2020)***

  96. Li, N., Shi, C., Li, L., Zhang, Z., Ma, C.: Tunable Br-doping CH3NH3PbI3−xBrx thin films for efficient planar perovskite solar cells. Superlattices Microstruct. 104, 445–450 (2017). https://doi.org/10.1016/j.spmi.2017.03.011

    Article  CAS  Google Scholar 

  97. Ni, X., Lei, L., Yu, Y., Xie, J., Li, M., Yang, S., Wang, M., Liu, J., Zhang, H., Ye, B.: Effect of Br content on phase stability and performance of H2N=CHNH2Pb(I1−xBrx)3 perovskite thin films. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/aafeb6

    Article  PubMed  Google Scholar 

  98. Binyamin, T., Pedesseau, L., Remennik, S., Sawahreh, A., Even, J., Etgar, L.: Fully inorganic mixed cation lead halide perovskite nanoparticles: a study at the atomic level. Chem. Mater. 32, 1467–1474 (2020). https://doi.org/10.1021/acs.chemmater.9b04426

    Article  CAS  Google Scholar 

  99. Tan, X., Liu, X., Liu, Z., Sun, B., Li, J., Xi, S., Shi, T., Tang, Z., Liao, G.: Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells. Appl. Surf. Sci. 499, 143990 (2020). https://doi.org/10.1016/j.apsusc.2019.143990

    Article  CAS  Google Scholar 

  100. Wu, Y.-H., Ding, Y., Liu, X.-Y., Ding, X.-H., Liu, X.-P., Pan, X., Dai, S.-Y.: Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer. Sci. China Mater. 63, 47–54 (2020). https://doi.org/10.1007/s40843-019-1174-3

    Article  CAS  Google Scholar 

  101. Duan, J., Wei, J., Tang, Q., Li, Q.: Unveiling the interfacial charge extraction kinetics in inorganic perovskite solar cells with formamidinium lead halide (FAPbX3) nanocrystals. Sol. Energy 195, 644–650 (2020). https://doi.org/10.1016/j.solener.2019.12.001

    Article  CAS  Google Scholar 

  102. Wang, X., Rakstys, K., Jack, K., Jin, H., Lai, J., Li, H., Ranasinghe, C.S.K., Saghaei, J., Zhang, G., Burn, P.L., Gentle, I.R., Shaw, P.E.: Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021). https://doi.org/10.1038/s41467-020-20272-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Snaith, H.J.: Present status and future prospects of perovskite photovoltaics. Nat. Mater. (2018). https://doi.org/10.1038/s41563-018-0071-z

    Article  PubMed  Google Scholar 

  104. Sun, Q.Y., Kong, W.Y., Zhang, C.Y., Yang, X.D.: Phase transition stability of formamidine (FA)-based perovskite films. Sci. Sin. Phys. Mech. Astron. (2021). https://doi.org/10.1360/SSPMA-2020-0490

    Article  Google Scholar 

  105. Shan, L., Ding, J., Sun, W., Han, Z., Jin, L.: Core-shell heterostructured BiVO4/BiVO4:Eu3+ with improved photocatalytic activity. J. Inorg. Organomet. Polym Mater. 27, 1750–1759 (2017). https://doi.org/10.1007/s10904-017-0638-1

    Article  CAS  Google Scholar 

  106. Hui, W., Chao, L., Lu, H., Xia, F., Wei, Q., Su, Z., Niu, T., Tao, L., Du, B., Li, D., Wang, Y., Dong, H., Zuo, S., Li, B., Shi, W., Ran, X., Li, P., Zhang, H., Wu, Z., Ran, C., Song, L., Xing, G., Gao, X., Zhang, J., Xia, Y., Chen, Y., Huang, W.: Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359 (2021). https://doi.org/10.1126/science.abf7652

    Article  CAS  PubMed  Google Scholar 

  107. Liu, Z., Liu, F., Duan, C., Yuan, L., Zhu, H., Li, J., Wen, Q., Waterhouse, G.I.N., Yang, X., Yan, K.: Polymerization stabilized black-phase FAPbI3 perovskite solar cells retain 100% of initial efficiency over 100 days. Chem. Eng. J. 419, 129482 (2021). https://doi.org/10.1016/j.cej.2021.129482

    Article  CAS  Google Scholar 

  108. Wang, J., Ye, X., Wang, Y., Wang, Z., Wong, W., Li, C.: Halide perovskite based on hydrophobic ionic liquid for stability improving and its application in high-efficient photovoltaic cell. Electrochim. Acta 303, 133–139 (2019). https://doi.org/10.1016/j.electacta.2019.02.071

    Article  CAS  Google Scholar 

  109. Isikgor, F.H., Subbiah, A.S., Eswaran, M.K., Howells, C.T., Babayigit, A., de Bastiani, M., Yengel, E., Liu, J., Furlan, F., Harrison, G.T., Zhumagali, S., Khan, J.I., Laquai, F., Anthopoulos, T.D., McCulloch, I., Schwingenschlögl, U., de Wolf, S.: Scaling-up perovskite solar cells on hydrophobic surfaces. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2020.105633

    Article  Google Scholar 

  110. Li, J., Bu, T., Lin, Z., Mo, Y., Chai, N., Gao, X., Ji, M., Zhang, X.L., Cheng, Y.B., Huang, F.: Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126712

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhou, Q., Liang, L., Hu, J., Cao, B., Yang, L., Wu, T., Li, X., Zhang, B., Gao, P.: High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201802595

    Article  Google Scholar 

  112. Zhu, H., Liu, Y., Eickemeyer, F.T., Pan, L., Ren, D., Ruiz-Preciado, M.A., Carlsen, B., Yang, B., Dong, X., Wang, Z., Liu, H., Wang, S., Zakeeruddin, S.M., Hagfeldt, A., Dar, M.I., Li, X., Grätzel, M.: Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. (2020). https://doi.org/10.1002/ADMA.201907757

    Article  PubMed  PubMed Central  Google Scholar 

  113. Boyd, C.C., Cheacharoen, R., Leijtens, T., McGehee, M.D.: Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.8b00336

    Article  PubMed  Google Scholar 

  114. Jin, L., Liu, T., Wang, C.: Ionic gel electrolytes composite with SiO2 nanoparticles for quasi-solid-state dye-sensitized solar cells. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0131-7

    Article  Google Scholar 

  115. Boonmongkolras, P., Naqvi, S.D.H., Kim, D., Pae, S.R., Kim, M.K., Ahn, S., Shin, B.: Universal passivation strategy for the hole transport layer/perovskite interface via an alkali treatment for high-efficiency perovskite solar cells. Solar RRL. 5, 2000793 (2021). https://doi.org/10.1002/solr.202000793

    Article  CAS  Google Scholar 

  116. Li, S., Lu, H., Kan, Z., Zhu, L., Wu, F.: Engineering of P3CT-Na through diprophylline treatment to realize efficient and stable inverted perovskite solar cells. Chem. Eng. J. 419, 129581 (2021). https://doi.org/10.1016/j.cej.2021.129581

    Article  CAS  Google Scholar 

  117. Li, M., Ma, S., Mateen, M., Liu, X., Ding, Y., Gao, J., Yang, Y., Zhang, X., Wu, Y., Dai, S.: Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells. Sol. Energy 195, 618–625 (2020). https://doi.org/10.1016/j.solener.2019.11.071

    Article  CAS  Google Scholar 

  118. Min, C.D.Z., He, F., Wang, D., Yang, C., Fan, G.: Efficient carbon-based inorganic CsPbIBr2 perovskite solar cells with P3HT hole transport layers. Aerosp. Shanghai. 37, 98–103 (2020). https://doi.org/10.19328/j.cnki.1006

  119. Jin, J., Yang, M., Deng, W., Xin, J., Tai, Q., Qian, J., Dong, B., Li, W., Wang, J., Li, J.: Highly efficient and stable carbon-based perovskite solar cells with the polymer hole transport layer. Sol. Energy 220, 491–497 (2021). https://doi.org/10.1016/j.solener.2021.03.081

    Article  CAS  Google Scholar 

  120. Ouyang, D., Chen, C., Huang, Z., Zhu, L., Yan, Y., Choy, W.C.H.: Hybrid 3D nanostructure-based hole transport layer for highly efficient inverted perovskite solar cells. ACS Appl. Mater. Interfaces 13, 16611–16619 (2021). https://doi.org/10.1021/acsami.0c21064

    Article  CAS  PubMed  Google Scholar 

  121. Saranin, D., Komaricheva, T., Luchnikov, L., Muratov, D.S., Le, T.S., Karpov, Y., Gostishchev, P., Yurchuk, S., Kuznetsov, D., Didenko, S., di Carlo, A.: Hysteresis-free perovskite solar cells with compact and nanoparticle NiO for indoor application. Sol. Energy Mater. Sol. Cells 227, 111095 (2021). https://doi.org/10.1016/j.solmat.2021.111095

    Article  CAS  Google Scholar 

  122. Schloemer, T.H., Raiford, J.A., Gehan, T.S., Moot, T., Nanayakkara, S., Harvey, S.P., Bramante, R.C., Dunfield, S., Louks, A.E., Maughan, A.E., Bliss, L., McGehee, M.D., van Hest, M.F.A.M., Reese, M.O., Bent, S.F., Berry, J.J., Luther, J.M., Sellinger, A.: The molybdenum oxide interface limits the high-temperature operational stability of unencapsulated perovskite solar cells. ACS Energy Lett. 5, 2349–2360 (2020). https://doi.org/10.1021/acsenergylett.0c01023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Su, C., Wang, Y. et al. The recent process and future of perovskite solar cells materials. J Incl Phenom Macrocycl Chem 102, 235–249 (2022). https://doi.org/10.1007/s10847-021-01126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01126-x

Keywords

Navigation