Skip to main content
Log in

Directed synthesis and study of their spectroscopic behavior in solution of rare-earth phthalocyaninates substituted by benzyloxy- and methylphenylethylphenoxy-groups

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Novel neodymium phthalocyaninates based on template condensation of 4-[(4-benzyloxy)phenoxy]- or 4-(1-methyl-1-phenylethyl)phenoxyphthalonitriles with neodymium salts were obtained. The most selective preparation of neodymium sandwich complexes was found to occur with neodymium acetate as a template. The spectroscopic properties of neodymium metal complexes synthesized in organic solvents were studied. It was determined sandwich complexes of neodymium forms a mixture of in "blue" and "green" forms in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhattacharya, S., Reddy, G., Paul, S., Saddam, S., Kumar, S., Giribabu, L., Samanta, A., Rao, V.: Comparative photophysical and femtosecond third-order nonlinear optical properties of novel imidazole substituted metal phthalocyanines. Dyes Pigments 184, 108791 (2021). https://doi.org/10.1016/j.dyepig.2020.108791

    Article  CAS  Google Scholar 

  2. Husain, A., Ganesan, A., Sebastian, M., Makhseed, S.: Large ultrafast nonlinear optical response and excellent optical limiting behaviour in pyrene-conjugated zinc (II) phthalocyanines at a near-infrared wavelength. Dyes Pigments 184, 108787 (2021). https://doi.org/10.1016/j.dyepig.2020.108787

    Article  CAS  Google Scholar 

  3. Ou, C., Lv, W., Chen, J., Yu, T., Song, Y., Wang, Y., Wang, S., Yang, G.: Structural, photophysical and nonlinear optical limiting properties of sandwich phthalocyanines with different rare earth metals. Dyes Pigments 184, 108862 (2021). https://doi.org/10.1016/j.dyepig.2020.108862

    Article  CAS  Google Scholar 

  4. Li, B., Cui, Z., Han, Y., Ding, J., Jiang, Z., Zhang, Y.: Novel axially substituted lanthanum phthalocyanines: synthesis, photophysical and nonlinear optical properties. Dyes Pigments 179, 108407 (2020). https://doi.org/10.1016/j.dyepig.2020.108407

    Article  CAS  Google Scholar 

  5. Koifman, O.I., Ageeva, T.A., Beletskaya, I.P., Averin, A.D., Yakushev, A.A., Tomilova, L.G., Dubinina, T.V., Tsivadze, A.Y., Gorbunova, Y.G., Martynov, A.G., Konarev, D.V., Khasanov, S.S., Lyubovskaya, R.N., Lomova, T.N., Korolev, V.V., Zenkevich, E.I., Blaudeck, T., von Borczyskowski, C., Zahn, D.R.T., Mironov, A.F., Bragina, N.A., Ezhov, A.V., Zhdanova, K.A., Stuzhin, P.A., Pakhomov, G.L., Rusakova, N.V., Semenishyn, N.N., Smola, S.S., Parfenyuk, V.I., Vashurin, A.S., Makarov, S.V., Dereven’kov, I.A., Mamardashvili, N.Z., Kurtikyan, T.S., Martirosyan, G.G., Burmistrov, V.A., Aleksandriiskii, V.V., Novikov, I.V., Pritmov, D.A., Grin, M.A., Suvorov, N.V., Tsigankov, A.A., Fedorov, A.Y., Kuzmina, N.S., Nyuchev, A.V., Otvagin, V.F., Kustov, A.V., Belykh, D.V., Berezin, D.B., Solovieva, A.B., Timashev, P.S., Milaeva, E.R., Gracheva, Y.A., Dodokhova, M.A., Safronenko, A.V., Shpakovsky, D.B., Syrbu, S.A., Gubarev, Y.A., Kiselev, A.N., Koifman, M.O., Lebedeva, N.S., Yurina, E.S.: Macroheterocyclic compounds—a key building block in new functional materials and molecular devices. Macroheterocycles. 13, 311–467 (2020). https://doi.org/10.6060/mhc200814k

    Article  CAS  Google Scholar 

  6. Chan, W.L., Xie, C., Lo, W.S., Bünzli, J.C.G., Wong, W.K., Wong, K.L.: Lanthanide–tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chem. Soc. Rev. (2021). https://doi.org/10.1039/C9CS00828D

    Article  PubMed  Google Scholar 

  7. Kuzmina, E.A., Dubinina, T.V., Vasilevsky, P.N., Saveliev, M.S., Gerasimenko, A.Y., Borisova, N.E., Tomilova, L.G.: Novel octabromo-substituted lanthanide (III) phthalocyanines—prospective compounds for nonlinear optics. Dyes Pigments 185, 108871 (2021). https://doi.org/10.1016/j.dyepig.2020.108871

    Article  CAS  Google Scholar 

  8. Sekhosana, K.E., Nyokong, T.: Nonlinear optical behavior of n-tuple decker phthalocyanines at the nanosecond regime: investigation of change in mechanisms. RSC Adv. 9, 16223–16234 (2019). https://doi.org/10.1039/c9ra01836k

    Article  CAS  Google Scholar 

  9. Kuzmina, E.A., Dubinina, T.V., Borisova, N.E., Tarasevich, B.N., Krasovskii, V.I., Feofanov, I.N., Dzuban, A.V., Tomilova, L.G.: Planar and sandwich-type Pr(III) and Nd(III) chlorinated phthalocyaninates: synthesis, thermal stability and optical properties. Dyes Pigments 174, 108075 (2020). https://doi.org/10.1016/j.dyepig.2019.108075

    Article  CAS  Google Scholar 

  10. Tikhomirova, T., Nalimova, K., Kerner, A., Vashurin, A., Znoyko, S.: Er(III) and Lu(III) complexes of 2(3),9(10),16(17),23(24)-tetrakis- and 2,3,9,10,16,17,23,24-octakis-[4-(1-methyl-1-phenylethyl)phenoxy]phthalocyaninato. Synthesis and spectroscopic properties. J. Porphyr. Phthalocyanines 23, 575–583 (2019). https://doi.org/10.1142/S1088424619500251

    Article  CAS  Google Scholar 

  11. Rumyantseva, T.A., Tarasova, E.S., Maltseva, E.S., Shaposhnikov, G.P.: Complexes of erbium and lutetium of different compositions with 4-R-5-nitro-substituted phthalocyanines. Russ. J. Gen. Chem. 90, 118–122 (2020). https://doi.org/10.1134/S1070363220010181

    Article  CAS  Google Scholar 

  12. Pushkarev, V.E., Tomilova, L.G., Nemykin, V.N.: Historic overview and new developments in synthetic methods for preparation of the rare-earth tetrapyrrolic complexes. Coord. Chem. Rev. 319, 110–179 (2016). https://doi.org/10.1016/j.ccr.2016.04.005

    Article  CAS  Google Scholar 

  13. Kandaz, M., Bilgiçli, A.T., Altindal, A.: Metal ion sensing functional mono and double-decker lanthanide phthalocyanines: synthesis, characterization and electrical properties. Synth. Met. 160, 52–60 (2010). https://doi.org/10.1016/j.synthmet.2009.09.039

    Article  CAS  Google Scholar 

  14. Shokurov, A.V., Kutsybala, D.S., Martynov, A.G., Bakirov, A.V., Shcherbina, M.A., Chvalun, S.N., Gorbunova, Y.G., Tsivadze, A.Y., Zaytseva, A.V., Novikov, D., Arslanov, V.V., Selektor, S.L.: Long-sought redox isomerization of the europium(iii/ii) complex achieved by molecular reorientation at the interface. Langmuir 36, 1423–1429 (2020). https://doi.org/10.1021/acs.langmuir.9b03403

    Article  CAS  PubMed  Google Scholar 

  15. Nyokong, T.: Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev. 251, 1707–1722 (2007). https://doi.org/10.1016/j.ccr.2006.11.011

    Article  CAS  Google Scholar 

  16. Smola, S.S., Snurnikova, O.V., Fadeyev, E.N., Sinelshchikova, A.A., Gorbunova, Y.G., Lapkina, L.A., Tsivadze, A.Y., Rusakova, N.V.: The first example of near-infrared 4f luminescence of sandwich-type lanthanide phthalocyaninates. Macroheterocycles 5, 343–349 (2012). https://doi.org/10.6060/mhc2012.121193r

    Article  CAS  Google Scholar 

  17. Tikhomirova, T.V., Filippova, A.A., Govorova, D.K., Shaposhnikov, G.P., Vashurin, A.S.: Sandwich-type complexes of erbium(III) and gadolinium(III) with R-phenoxy-substituted phthalocyanines. Macroheterocycles 11, 35–40 (2018). https://doi.org/10.6060/mhc180170t

    Article  CAS  Google Scholar 

  18. Dubinina, T.V., Paramonova, K.V., Trashin, S.A., Borisova, N.E., Tomilova, L.G., Zefirov, N.S.: Novel near-IR absorbing phenyl-substituted phthalo- and naphthalocyanine complexes of lanthanide(iii): synthesis and spectral and electrochemical properties. Dalt. Trans. 43, 2799–2809 (2014). https://doi.org/10.1039/c3dt52726c

    Article  CAS  Google Scholar 

  19. Casilli, S., De Luca, M., Apetrei, C., Parra, V., Arrieta, Á.A., Valli, L., Jiang, J., Rodríguez-Méndez, M.L., De Saja, J.A.: Langmuir-Blodgett and Langmuir-Schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors: applications to the study of antioxidants. Appl. Surf. Sci. 246, 304–312 (2005). https://doi.org/10.1016/j.apsusc.2004.11.002

    Article  CAS  Google Scholar 

  20. Jiang, J., Dennis, K.P.N.G.: A decade journey in the chemistry of sandwich-type tetrapyrrolato-rare earth complexes. Acc. Chem. Res. 42, 79–88 (2009). https://doi.org/10.1021/ar800097s

    Article  CAS  PubMed  Google Scholar 

  21. Plekhanov, A.I., Basova, T.V., Parkhomenko, R.G., Gürek, A.G.: Nonlinear optical properties of lutetium and dysprosium bisphthalocyanines at 1550 nm with femto- and nanosecond pulse excitation. Opt. Mater. (Amst) 64, 13–17 (2017). https://doi.org/10.1016/j.optmat.2016.11.025

    Article  CAS  Google Scholar 

  22. Liu, M.O., Tai, C.H., HuWei, A.T.T.H.: Reverse saturable absorption of lanthanide bisphthalocyanines and their application for optical switches. J. Organomet. Chem. 689, 2138–2143 (2004). https://doi.org/10.1016/j.jorganchem.2004.04.003

    Article  CAS  Google Scholar 

  23. Sekhosana, K.E., Nkhahle, R., Nyokong, T.: The primary demonstration of exciton coupling effects on optical limiting properties of blue double-decker lanthanide phthalocyanine salts. ChemistrySelect 3, 6671–6682 (2018). https://doi.org/10.1002/slct.201800597

    Article  CAS  Google Scholar 

  24. Paltrinieri, T., Bondi, L., Đerek, V., Fraboni, B., Głowacki, E.D., Cramer, T.: Understanding photocapacitive and photofaradaic processes in organic semiconductor photoelectrodes for optobioelectronics. Adv. Funct. Mater. 31(16), 2010116 (2021). https://doi.org/10.1002/adfm.202010116

    Article  CAS  Google Scholar 

  25. Bouvet, M., Gaudillat, P., Suisse, J.M.: Lanthanide macrocyclic complexes: from molecules to materials and from materials to devices. J. Porphyr. Phthalocyanines. 17, 628–635 (2013). https://doi.org/10.1142/S1088424613300048

    Article  CAS  Google Scholar 

  26. Botnar, A., Tikhomirova, T., Nalimova, K., Erzunov, D., Razumov, M., Vashurin, A.: Novel d- and f-metal phthalocyaninates based on 4-(2,4,5-trichlorophenoxy)phthalonitrile. Synthesis, spectroscopic and fluorescent properties. J. Mol. Struct. 1205, 127626 (2020). https://doi.org/10.1016/j.molstruc.2019.127626

    Article  CAS  Google Scholar 

  27. Erzunov, D., Tikhomirova, T., Botnar, A., Znoyko, S., Abramov, I., Mayzlish, V., Marfin, Y., Vashurin, A.: Bulky-substituted phthalodinitriles and cobalt and copper phthalocyanines based on them: synthesis, thermal analysis and spectroscopic properties. J. Therm. Anal. Calorim. 142, 1807–1816 (2020). https://doi.org/10.1007/s10973-020-10025-1

    Article  CAS  Google Scholar 

  28. Pushkarev, V.E., Tomilova, L.G., Tomilov, Y.: V: Synthetic approaches to lanthanide complexes with tetrapyrrole type ligands. Russ. Chem. Rev. 77, 875–907 (2008). https://doi.org/10.1070/RC2008v077n10ABEH003879

    Article  CAS  Google Scholar 

  29. Gümrükçü, G., Özgür, M.Ü., Altindal, A., Özkaya, A.R., Salih, B., Bekaroǧlu, Ö.: Synthesis and electrochemical, electrical and gas sensing properties of novel mononuclear metal-free, Zn(II), Ni(II), Co(II), Cu(II), Lu(III) and double-decker Lu(III) phthalocyanines substituted with 2-(2H–1,2,3-benzotriazol- 2-yl)-4-(1,1,3,3-tetramethyl. Synth. Met. 161, 112–123 (2011). https://doi.org/10.1016/j.synthmet.2010.11.006

    Article  CAS  Google Scholar 

  30. Durmuş, M., Nyokong, T.: Synthesis and solvent effects on the electronic absorption and fluorescence spectral properties of substituted zinc phthalocyanines. Polyhedron 26, 2767–2776 (2007). https://doi.org/10.1016/j.poly.2007.01.018

    Article  CAS  Google Scholar 

  31. Bao, M., Pan, N., Ma, C., Arnold, D.P., Jiang, J.: Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes—part 4. The infrared characteristics of phthalocyanine in heteroleptic tris(phthalocyaninato) rare earth complexes. Vib. Spectrosc. 32, 175–184 (2003). https://doi.org/10.1016/S0924-2031(03)00058-4

    Article  CAS  Google Scholar 

  32. Sekhosana, K.E., Shumba, M., Nyokong, T.: Electrochemical and non-linear optical behavior of a new neodymium double-decker phthalocyanine. Polyhedron 138, 154–160 (2017). https://doi.org/10.1016/j.poly.2017.09.033

    Article  CAS  Google Scholar 

  33. Önal, E., Tüncel, Ö., Albakour, M., Çelik, G.G., Gürek, A.G., Özçelik, S.: Synthesizing and evaluating the photodynamic efficacy of asymmetric heteroleptic A7B type novel lanthanide bis-phthalocyanine complexes. RSC Adv. 11, 6188–6200 (2021). https://doi.org/10.1039/d1ra00197c

    Article  CAS  Google Scholar 

  34. Korostei, Y.S., Pushkarev, V.E., Tolbin, A.Y., Dzuban, A.V., Chernyak, A.V., Konev, D.V., Medvedeva, T.O., Talantsev, A.D., Sanina, N.A., Tomilova, L.G.: Sandwich quadruple-decker binuclear lanthanide(III) complexes based on clamshell-type phthalocyanine ligand: synthesis and physicochemical studies. Dyes Pigments 170, 107648 (2019). https://doi.org/10.1016/j.dyepig.2019.107648

    Article  CAS  Google Scholar 

  35. Kalashnikova, I.P., Zhukov, I.V., Tomilova, L.G., Zefirov, N.S.: Hexadecabenzyloxy(diphthalocyanines) of rare-earth elements: synthesis and spectroscopic and electrochemical characteristics. Russ. Chem. Bull. 54, 2094–2098 (2005). https://doi.org/10.1007/s11172-006-0082-9

    Article  CAS  Google Scholar 

  36. Yonekura, T., Ohsaka, T., Kitamura, F., Tokuda, K.: Synthesis and electrochemical properties of bis(octacyano phthalocyaninato)neodymium(III) complex. J. Porphyr. Phthalocyanines. 9, 54–58 (2005). https://doi.org/10.1142/S1088424605000101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the Russian Science Foundation (project 17-73-20017) using the equipment of the Center for Collective Usage of Ivanovo State University of Chemistry and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Tikhomirova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botnar, A.A., Bychkova, A.N., Domareva, N.P. et al. Directed synthesis and study of their spectroscopic behavior in solution of rare-earth phthalocyaninates substituted by benzyloxy- and methylphenylethylphenoxy-groups. J Incl Phenom Macrocycl Chem 102, 303–311 (2022). https://doi.org/10.1007/s10847-021-01120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01120-3

Keywords

Navigation