Skip to main content
Log in

A β-cyclodextrin/graphene oxide hybrid gel with smart responsiveness

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Even through gels based on the polymer modified with β-cyclodextrin have been researched widely, there are only few studies focus on gels based on β-cyclodextrin directly. In this study, we report a novel smart responsive β-cyclodextrin/graphene oxide hybrid gel. Graphene oxide can be loaded into the network of β-cyclodextrin gel successfully by co-assembly method, which can be supported by transmission electron microscope and scanning electron microscope. Hydrogen bonding is the main driving force in gel formation from fourier transform infrared spectroscopy and X-ray diffraction analysis. More interesting is that β-cyclodextrin/graphene oxide hybrid gel can respond to multiple stimuli sensitively. The change of temperature can induce the formation and deformation of gel reversibly. Besides, gel will collapse with the addition of different metal ions including Na+, K+, Zn2+, Ba2+ and Fe3+. Hence, this composite gel is a smart responsive material, may have great potential applications in intelligent material fields.

Graphic Abstract

In this study, we report a novel smart responsive β-cyclodextrin/graphene oxide hybrid gel. Graphene oxide can be loaded into the network of β-cyclodextrin gel successfully by co-assembly method, which can be supported by transmission electron microscope and scanning electron microscope. Hydrogen bonding is the main driving force in gel formation from fourier transform infrared spectroscopy and X-ray diffraction analysis. More interesting is that β-cyclodextrin/graphene oxide hybrid gel can respond to multiple stimuli sensitively. The change of temperature can induce the formation and deformation of gel reversibly. Besides, gel will collapse with the addition of different metal ions including Na+, K+, Zn2+, Ba2+ and Fe3+. Hence, this composite gel is a smart responsive material, may have great potential applications in intelligent material fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Ramin, M.A., Sindhu, K.R., Appavoo, A., Oumzil, K., Grinstaff, M.W., Chassande, O., Barthélémy, P.: Cation tuning of supramolecular gel properties: a new paradigm for sustained drug delivery. Adv. Mater. 29, 1605227 (2017)

    Article  Google Scholar 

  2. Xu, J.K., Strandman, S., Zhu, J.X., Barralet, J., Cerruti, M.: Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37, 395–404 (2015)

    Article  CAS  Google Scholar 

  3. Yuk, H., Lu, B.Y., Zhao, X.H.: Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019)

    Article  CAS  Google Scholar 

  4. Wang, H.Q., Song, S.S., Hao, J.C., Song, A.X.: Hydrogels triggered by metal ions as precursors of network CuS for DNA detection. Chem. Eur. J. 21, 12194–12201 (2015)

    Article  CAS  Google Scholar 

  5. Song, S.S., Song, A.X., Feng, L., Wei, G.C., Dong, S.L., Hao, J.C.: Fluorescent hydrogels with tunable nanostructure and viscoelasticity for formaldehyde removal. ACS Appl. Mater. Inter. 20, 18319–18328 (2014)

    Article  Google Scholar 

  6. Lu, C.J., Zhang, M.M., Tang, D.T., Yan, X.Z., Zhang, Z.Y., Zhou, Z.X., Song, B., Wang, H., Li, X.P., Yin, S.C., Sepehrpour, H., Stang, P.J.: Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host–guest interactions. J. Am. Chem. Soc. 140, 7674–7680 (2018)

    Article  CAS  Google Scholar 

  7. Okesola, B.O., Smith, D.K.: Applying low-molecular weight supramolecular gelators in an environmental setting-self-assembled gels as smart materials for pollutant removal. Chem. Soc. Rev. 45, 4226–4251 (2016)

    Article  CAS  Google Scholar 

  8. Shao, H., Parquette, J.R.: A π-conjugated hydrogel based on an Fmoc-dipeptide naphthalene diimide semiconductor. Chem. Commun. 46, 4285–4287 (2010)

    Article  CAS  Google Scholar 

  9. de Kerchove, A.J., Elimelech, M.: Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: measurements and mechanisms. Biomacromolecules 8, 113–121 (2007)

    Article  Google Scholar 

  10. Ma, M.F., Luan, T.X., Yang, M.M., Liu, B., Wang, Y.J., An, W., Wang, B., Tang, R.P., Hao, A.Y.: Self-assemblies of cyclodextrin derivatives modified by ferrocene with multiple stimulus responsiveness. Soft Matter 13, 1534–1538 (2017)

    Article  CAS  Google Scholar 

  11. Xing, P.Y., Sun, T., Hao, A.Y.: Vesicles from supramolecular amphiphiles. RSC Adv. 3, 24776–24793 (2013)

    Article  CAS  Google Scholar 

  12. Zhou, C.C., Huang, J.B., Yan, Y.: Chain length dependent alkane/β-cyclodextrin nonamphiphilic supramolecular building blocks. Soft Matter 12, 1579–1585 (2016)

    Article  CAS  Google Scholar 

  13. Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A.: Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 511, 1–6 (2011)

    Google Scholar 

  14. Deng, W., Yamaguchi, H., Takashima, Y., Harada, A.: A chemical-responsive supramolecular hydrogel from modified cyclodextrins. Angew. Chem. Internat. Edit 46, 5144–5147 (2007)

    Article  CAS  Google Scholar 

  15. Du, P., Liu, J.H., Chen, G.S., Jiang, M.: Dual responsive supramolecular hydrogel with electrochemical activity. Langmuir 27, 9602–9608 (2011)

    Article  CAS  Google Scholar 

  16. Nakahata, M., Takashima, Y., Harada, A.: Redox-responsive macroscopic gel assembly based on discrete dual interactions. Angew. Chem. Internat. Edit. 53, 3617–3621 (2014)

    Article  CAS  Google Scholar 

  17. Li, Y.Y., Liu, J., Du, G.Y., Yan, H., Wang, H.Y., Zhang, H.C., An, W., Zhao, W.J., Sun, T., Xin, F.F., Kong, L., Li, Y.M., Hao, A.Y., Hao, J.C.: Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N, N-dimethylformamide. J. Phys. Chem. B 114, 10321–10326 (2010)

    Article  CAS  Google Scholar 

  18. Hou, Y.H., Xin, F.F., Yin, M.J., Kong, L., Zhang, H.C., Sun, T., Xing, P.Y., Hao, A.Y.: Stimuli-responsive supramolecular organogels that exhibit a succession of micro-morphologies. Colloids Surf. A 414, 160–167 (2012)

    Article  CAS  Google Scholar 

  19. Li, Z.L., Hao, A.Y., Hao, J.C.: Formation of heat-triggered supramolecular organogel in which β-cyclodextrin as sole gelator. Colloids Surf. A 441, 8–15 (2014)

    Article  CAS  Google Scholar 

  20. Xing, P.Y., Chu, X.X., Li, S.Y., Hou, Y.H., Ma, M.F., Yang, J.S., Hao, A.Y.: Self-recovering β-cyclodextrin gel controlled by good/poor solvent environments. RSC Adv. 3, 22087–22094 (2013)

    Article  CAS  Google Scholar 

  21. Liu, W.Q., Xing, P.Y., Xin, F.F., Hou, Y.H., Sun, T., Hao, J.C., Hao, A.Y.: Novel double phase transforming organogel based on β-cyclodextrin in 1,2-propylene glycol. J. Phys. Chem. B 116, 13106–13113 (2012)

    Article  CAS  Google Scholar 

  22. Xing, P.Y., Sun, T., Li, S.Y., Hao, A.Y., Su, J., Hou, Y.H.: An instant-formative heat-set organogel induced by small organic molecules at a high temperature. Colloids Surf. A 421, 44–50 (2013)

    Article  CAS  Google Scholar 

  23. Hou, Y.H., Sun, T., Xin, F.F., Xing, P.Y., Li, S.Y., Hao, A.Y.: Transformation from a heat-set organogel to a room-temperature organogel induced by alcohols. J. Incl. Phenom. Macrocycl. Chem. 79, 133–140 (2014)

    Article  CAS  Google Scholar 

  24. Chu, X.X., Xing, P.Y., Li, S.Y., Ma, M.F., Hao, A.Y.: Inorganic salt-tuned multiple self-assemblies of supramolecular β-cyclodextrin gel. Colloids Surf. A 461, 11–17 (2014)

    Article  CAS  Google Scholar 

  25. Dreyer, D.R., Park, S.J., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  26. Panda, S., Rout, T.K., Prusty, A.D., Ajayan, P.M., Nayak, S.: Electron transfer directed antibacterial properties of graphene oxide on metals. Adv. Mater. 30, 1702149 (2018)

    Article  Google Scholar 

  27. Dai, H.J., Zhang, Y.H., Ma, L., Zhang, H., Huang, H.H.: Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohyd. Polym. 215, 366–376 (2019)

    Article  CAS  Google Scholar 

  28. Ghosha, D., Dhibar, S., Dey, A., Mukherjee, S., Joardar, N., Sinha Babu, S.P., Dey, B.: Graphene oxide dispersed supramolecular hydrogel capped benign green silver nanoparticles for anticancer, antimicrobial, cell attachment and intracellular imaging applications. J. Mol. Liq. 282, 1–12 (2019)

    Article  Google Scholar 

  29. Yang, M.L., Liu, X.L., Qi, Y.C., Sun, W., Men, Y.: Preparation of κ-carrageenan/graphene oxide gel beads and their efficient adsorption for methylene blue. J. Colloid Interf. Sci. 506, 669–677 (2017)

    Article  CAS  Google Scholar 

  30. Wu, J.H., Chen, A.P., Qin, M., Huang, R., Zhang, G., Xue, B., Wei, J.W., Li, Y., Cao, Y., Wang, W.: Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale 7, 1655–1660 (2015)

    Article  CAS  Google Scholar 

  31. Valle, E.M.M.D.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  32. Xing, P.Y., Chen, H.Z., Ma, M.F., Xu, X.D., Hao, A.Y., Zhao, Y.L.: Light and cucurbit[7]uril complexation dual-responsiveness of a cyanostilbene-based self-assembled system. Nanoscale 8, 1892–1896 (2016)

    Article  CAS  Google Scholar 

  33. Liu, X.C., Fei, J.B., Wang, A.H., Cui, W., Zhu, P.L., Li, J.B.: Transformation of dipeptide-based organogels into chiral crystals by cryogenic treatment. Angew. Chem. Internat. Edit. 56, 1–5 (2017)

    Article  Google Scholar 

  34. Yuan, T.T., Xu, Y.Q., Fei, J.B., Xue, H.M., Li, X.B., Wang, C.L., Fytas, G., Li, J.B.: The ultrafast assembly of a dipeptide supramolecular organogel and its phase transition from gel to crystal. Angew. Chem. 131, 2–8 (2019)

    Article  Google Scholar 

  35. Xing, P.Y., Li, S.Y., Xin, F.F., Hou, Y.H., Hao, A.Y., Sun, T., Su, J.: Multi-responsive supramolecular organogel with a crystalline-like structure. Carbohyd. Res. 367, 18–24 (2013)

    Article  CAS  Google Scholar 

  36. Xin, F.F., Xing, P.Y., Li, S.Y., Hou, Y.H., Hao, A.Y.: A facile method to construct dual-responsive organogels with color changes. RSC Adv. 3, 21959–21963 (2013)

    Article  CAS  Google Scholar 

  37. Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T.: Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem. Rev. 98, 1787–1802 (1998)

    Article  CAS  Google Scholar 

  38. Lucio, D., Irache, J.M., Font, M., Martínez-Ohárriz, M.C.: Supramolecular structure of glibenclamide and β-cyclodextrins complexes. Int. J. Pharmaceut. 530, 377–386 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge financial support by Shandong Provincial Natural Science Foundation (NO. ZR2019PB006), NSFC Cultivation Project of Jining Medical University (NO. JYP2018KJ12), the PhD Start-up Scientific Research Foundation of Jining Medical University (NO. 2017JYQD03; 2017JYQD14), Supporting Fund for Teacher’s Research of Jining Medical University (JYFC2018KJ045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfang Ma or Huan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1491 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., He, Z., Zhou, S. et al. A β-cyclodextrin/graphene oxide hybrid gel with smart responsiveness. J Incl Phenom Macrocycl Chem 102, 109–116 (2022). https://doi.org/10.1007/s10847-021-01106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01106-1

Keywords

Navigation