Skip to main content
Log in

Organic transistor-based chemical sensors with self-assembled monolayers

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Numerous artificial receptors with noncovalent bonds have been developed to date, whereas chemical sensing devices combined with these receptors have not been fully established. An organic thin-film transistor (OTFT) can potentially operate as a supramolecular sensor chip by appropriately combining it with molecular recognition parts. In this review, the attempts to fabricate devices for electrical chemical sensing utilizing a self-assembled monolayer on a gate electrode or a surface of a semiconductor layer of the OTFT are described. Self-assembled scaffolds provide multi-recognition sites, leading to selective and sensitive detection. Furthermore, the OTFT functionalized with various receptors provide comprehensive sensor platforms for multiple analytes including cations, anions, electrically neutral molecules, and proteins in aqueous media. The OTFT-based sensor successfully detected analytes with size and chemical structural dependences on self-assembled receptors. Moreover, real-time continuous detection was also accomplished by the OTFT-based sensor integrated with a microfluidic system. Thus, this concept implies a promising future for applying an easy-to-use chemical sensor in practical situations by taking advantage of well-developed supramolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from [33]. Copyright 2015, Royal Society of Chemistry

Fig. 6

Reproduced with permission from [33] Copyright 2015, Royal Society of Chemistry

Fig. 7

Reproduced with permission from [44]. Copyright 2015, Royal Society of Chemistry

Fig. 8

Reproduced with permission from [62]. Copyright 2020, IOP Publishing

Fig. 9
Fig. 10

Reproduced with permission from [70]. Copyright 2017, John Wiley & Sons

Fig. 11

Reproduced with permission from Ref. [77]. Copyright 2016, Elsevier

Fig. 12

Reproduced with permission from [81]. Copyright 2020, John Wiley & Sons

Fig. 13

Reproduced with permission from [90]. Copyright 2018, Royal Society of Chemistry

Fig. 14

Reproduced with permission from [90]. Copyright 2018, Royal Society of Chemistry

Fig. 15

Reproduced with permission from Ref. [91]. Copyright 2020, John Wiley & Sons

Similar content being viewed by others

References

  1. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 2495–2496 (1967)

    Article  CAS  Google Scholar 

  2. Cram, D.J., Cram, J.M.: Host-guest chemistry. Science 183, 803–809 (1974)

    Article  CAS  PubMed  Google Scholar 

  3. Whitesides, G., Mathias, J., Seto, C.: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991)

    Article  CAS  PubMed  Google Scholar 

  4. Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000)

    Article  CAS  Google Scholar 

  5. Ballester, P.: Anion binding in covalent and self-assembled molecular capsules. Chem. Soc. Rev. 39, 3810–3830 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. Diercks, C.S., Yaghi, O.M.: The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017)

    Article  PubMed  CAS  Google Scholar 

  7. Catti, L., Zhang, Q., Tiefenbacher, K.: Advantages of catalysis in self-assembled molecular capsules. Chem. Eur. J. 22, 9060–9066 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. You, L., Zha, D., Anslyn, E.V.: Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 115, 7840–7892 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Fabbrizzi, L., Poggi, A.: Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 24, 197–202 (1995)

    Article  CAS  Google Scholar 

  10. Mako, T.L., Racicot, J.M., Levine, M.: Supramolecular luminescent sensors. Chem. Rev. 119, 322–477 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. Sasaki, Y., Kubota, R., Minami, T.: Molecular self-assembled chemosensors and their arrays. Coord. Chem. Rev. 429, 213607 (2021). https://doi.org/10.1016/j.ccr.2020.213607

    Article  CAS  Google Scholar 

  12. Nguyen, B.T., Anslyn, E.V.: Indicator–displacement assays. Coord. Chem. Rev. 250, 3118–3127 (2006)

    Article  CAS  Google Scholar 

  13. Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, F., Servet, B., Ries, S., Alnot, P.: Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers. J. Am. Chem. Soc. 115, 8716–8721 (1993)

    Article  CAS  Google Scholar 

  14. Sergeyev, S., Pisula, W., Geerts, Y.H.: Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Minari, T., Liu, C., Kano, M., Tsukagoshi, K.: Controlled self-assembly of organic semiconductors for solution-based fabrication of organic field-effect transistors. Adv. Mater. 24, 299–306 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, W., Li, Y., Wang, Z.: Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev. 42, 6113–6127 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)

    Article  CAS  Google Scholar 

  18. Li, H., Shi, W., Song, J., Jang, H.-J., Dailey, J., Yu, J., Katz, H.E.: Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 119, 3–35 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. Kubota, R., Sasaki, Y., Minamiki, T., Minami, T.: Chemical sensing platforms based on organic thin-film transistors functionalized with artificial receptors. ACS Sens. 4, 2571–2587 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Roberts, M.E., Mannsfeld, S.C.B., Queraltó, N., Reese, C., Locklin, J., Knoll, W., Bao, Z.: Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. USA 105, 12134–12139 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Minamiki, T., Minami, T., Kurita, R., Niwa, O., Wakida, S.-I., Fukuda, K., Kumaki, D., Tokito, S.: Accurate and reproducible detection of proteins in water using an extended-gate type organic transistor biosensor. Appl. Phys. Lett. 104, 243703 (2014)

    Article  CAS  Google Scholar 

  22. Klauk, H., Zschieschang, U., Pflaum, J., Halik, M.: Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda, K., Hamamoto, T., Yokota, T., Sekitani, T., Zschieschang, U., Klauk, H., Someya, T.: Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Appl. Phys. Lett. 95, 203301 (2009)

    Article  CAS  Google Scholar 

  24. McDowell, M., Hill, I.G., McDermott, J.E., Bernasek, S.L., Schwartz, J.: Improved organic thin-film transistor performance using novel self-assembled monolayers. Appl. Phys. Lett. 88, 073505 (2006)

    Article  CAS  Google Scholar 

  25. Ito, Y., Virkar, A.A., Mannsfeld, S., Oh, J.H., Toney, M., Locklin, J., Bao, Z.: Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396–9404 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Facchetti, A.: π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011)

    Article  CAS  Google Scholar 

  27. McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Fang, Y., Deng, Y., Dehaen, W.: Tailoring pillararene-based receptors for specific metal ion binding: from recognition to supramolecular assembly. Coord. Chem. Rev. 415, 213313 (2020)

    Article  CAS  Google Scholar 

  29. Hancock, R.D.: Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles. J. Chem. Educ. 69, 615 (1992)

    Article  CAS  Google Scholar 

  30. Lazarova, N., Babich, J., Valliant, J., Schaffer, P., James, S., Zubieta, J.: Thiol- and thioether-based bifunctional chelates for the {M(CO)3}+ Core (M = Tc, Re). Inorg. Chem. 44, 6763–6770 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Hatai, J., Bandyopadhyay, S.: Altered selectivity of a dipicolylamine based metal ion receptor. Chem. Commun. 50, 64–66 (2014)

    Article  CAS  Google Scholar 

  32. Kobayashi, H., Katano, K., Hashimoto, T., Hayashita, T.: Solvent effect on the fluorescence response of hydroxycoumarin bearing a dipicolylamine binding site to metal ions. Anal. Sci. 30, 1045–1050 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Minami, T., Sasaki, Y., Minamiki, T., Koutnik, P., Anzenbacher, P., Tokito, S.: A mercury(II) ion sensor device based on an organic field effect transistor with an extended-gate modified by dipicolylamine. Chem. Commun. 51, 17666–17668 (2015)

    Article  CAS  Google Scholar 

  34. Miller, J.N., Miller, J.C.: Statistics and chemometrics for analytical chemistry, 6th edn. Pearson, Harlow (2010)

    Google Scholar 

  35. Norkus, E., Stalnionienė, I., Crans, D.C.: Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions. Heteroat. Chem. 14, 625–632 (2003)

    Article  CAS  Google Scholar 

  36. Li, T., Dong, S., Wang, E.: Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal. Chem. 81, 2144–2149 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Kubik, S.: Anion recognition in water. Chem. Soc. Rev. 39, 3648–3663 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. Gale, P.A., Ethan, N.W., Wu, X.: Anion receptor chemistry. Chem. 1, 351–422 (2016)

    Article  CAS  Google Scholar 

  39. O’Neil, E.J., Smith, B.D.: Anion recognition using dimetallic coordination complexes. Coord. Chem. Rev. 250, 3068–3080 (2006)

    Article  CAS  Google Scholar 

  40. Amendola, V., Fabbrizzi, L., Mosca, L.: Anion recognition by hydrogen bonding: urea-based receptors. Chem. Soc. Rev. 39, 3889–3915 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Molina, P., Zapata, F., Caballero, A.: Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 117, 9907–9972 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Cooper, C.R., Spencer, N., James, T.D.: Selective fluorescence detection of fluoride using boronic acids. Chem. Commun., 1365–1366 (1998). https://doi.org/10.1039/A801693C

    Article  Google Scholar 

  43. DiCesare, N., Lakowicz, J.R.: New sensitive and selective fluorescent probes for fluoride using boronic acids. Anal. Biochem. 301, 111–116 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Minami, T., Minamiki, T., Tokito, S.: An anion sensor based on an organic field effect transistor. Chem. Commun. 51, 9491–9494 (2015)

    Article  CAS  Google Scholar 

  45. Minami, T., Kaneko, K., Nagasaki, T., Kubo, Y.: Isothiouronium-based amphiphilic gold nanoparticles with a colorimetric response to hydrophobic anions in water: a new strategy for fluoride ion detection in the presence of a phenylboronic acid. Tetrahedron Lett. 49, 432–436 (2008)

    Article  CAS  Google Scholar 

  46. Galbraith, E., James, T.D.: Boron based anion receptors as sensors. Chem. Soc. Rev. 39, 3831–3842 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. Christopher, J.W., Prakash, P., Tony, D.J.: A molecular colour sensor for fluoride. Chem. Lett. 30, 406–407 (2001)

    Article  Google Scholar 

  48. Kubo, Y., Kobayashi, A., Ishida, T., Misawa, Y., James, T.D.: Detection of anions using a fluorescent alizarin–phenylboronic acid ensemble. Chem. Commun., 2846–2848 (2005). https://doi.org/10.1039/B503588K

    Article  Google Scholar 

  49. Nicolas, M., Fabre, B., Simonet, J.: Electrochemical sensing of F and Cl with a boronic ester-functionalized polypyrrole. J. Electroanal. Chem. 509, 73–79 (2001)

    Article  CAS  Google Scholar 

  50. Phypers, B., Pierce, J.M.T.: Lactate physiology in health and disease. BJA Educ. 6, 128–132 (2006)

    Google Scholar 

  51. James, J.H., Luchette, F.A., McCarter, F.D., Fischer, J.E.: Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354, 505–508 (1999)

    Article  CAS  PubMed  Google Scholar 

  52. Lee, S.M., An, W.S.: New clinical criteria for septic shock: serum lactate level as new emerging vital sign. J. Thorac. Dis. 8, 1388–1390 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kushimoto, S., Akaishi, S., Sato, T., Nomura, R., Fujita, M., Kudo, D., Kawazoe, Y., Yoshida, Y., Miyagawa, N.: Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissue hypoxia/hypoperfusion in critically ill patients. Acute Med. Surg. 3, 293–297 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Iscra, F., Gullo, A., Biolo, G.: Bench-to-bedside review: lactate and the lung. Crit. Care Med. 6, 327–329 (2002)

    Google Scholar 

  55. Lee, D.C., Sohn, H.A., Park, Z.-Y., Oh, S., Kang, Y.K., Lee, K.-M., Kang, M., Jang, Y.J., Yang, S.-J., Hong, Y.K., Noh, H., Kim, J.-A., Kim, D.J., Bae, K.-H., Kim, D.M., Chung, S.J., Yoo, H.S., Yu, D.-Y., Park, K.C., Yeom, Y.I.: A lactate-induced response to hypoxia. Cell 161, 595–609 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. Kruse, J.A., Zaidi, S.A.J., Carlson, R.W.: Significance of blood lactate levels in critically III patients with liver disease. Am. J. Med. 83, 77–82 (1987)

    Article  CAS  PubMed  Google Scholar 

  57. Wacharasint, P., Nakada, T.-A., Boyd, J.H., Russell, J.A., Walley, K.R.: Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock 38, 4–10 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. Gómez, H.M.B.A.: Critical care nephrology, 3rd edn., pp. 394–404. Elsevier, Philadelphia (2019)

    Book  Google Scholar 

  59. Mizock, B.A.: Controversies in lactic acidosis: implications in critically III patients. JAMA 258, 497–501 (1987)

    Article  CAS  PubMed  Google Scholar 

  60. Babcock, L., Pizer, R.: Dynamics of boron acid complexation reactions. Formation of 1:1 boron acid-ligand complexes. Inorg. Chem. 19, 56–61 (1980)

    Article  CAS  Google Scholar 

  61. Sartain, F.K., Yang, X., Lowe, C.R.: Complexation of l-lactate with boronic acids: a solution and holographic analysis. Chem. Eur. J. 14, 4060–4067 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. Didier, P., Minami, T.: Non-enzymatic lactate detection by an extended-gate type organic field effect transistor. Semicond. Sci. Technol. 35, 11LT02 (2020)

    Article  CAS  Google Scholar 

  63. van Dun, S., Ottmann, C., Milroy, L.-G., Brunsveld, L.: Supramolecular chemistry targeting proteins. J. Am. Chem. Soc. 139, 13960–13968 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Haupt, K., Linares, A.V., Bompart, M., Bui, B.T.S.: Molecularly imprinted polymers. In: Haupt, K. (ed.) Molecular imprinting, pp. 1–28. Springer, Berlin (2012)

    Chapter  Google Scholar 

  65. Zhou, Q., Wang, M., Yagi, S., Minami, T.: Extended gate-type organic transistor functionalized by molecularly imprinted polymer for taurine detection. Nanoscale 13, 100–107 (2021). https://doi.org/10.1039/D0NR06920E

    Article  CAS  PubMed  Google Scholar 

  66. Sigal, G.B., Bamdad, C., Barberis, A., Strominger, J., Whitesides, G.M.: A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Anal. Chem. 68, 490–497 (1996)

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, X., Du, X., Huang, X., Lv, Z.: Creating protein-imprinted self-assembled monolayers with multiple binding sites and biocompatible imprinted cavities. J. Am. Chem. Soc. 135, 9248–9251 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. Haas, K.L., Franz, K.J.: Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 109, 4921–4960 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chao, A., Jiang, N., Yang, Y., Li, H., Sun, H.: A Ni-NTA-based red fluorescence probe for protein labelling in live cells. J. Mater. Chem. B 5, 1166–1173 (2017)

    Article  CAS  PubMed  Google Scholar 

  70. Minamiki, T., Sasaki, Y., Tokito, S., Minami, T.: Label-free direct electrical detection of a histidine-rich protein with sub-femtomolar sensitivity using an organic field-effect transistor. ChemistryOpen 6, 472–475 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khan, F., He, M., Taussig, M.J.: Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on Ni−nitrilotriacetic acid surfaces. Anal. Chem. 78, 3072–3079 (2006)

    Article  CAS  PubMed  Google Scholar 

  72. Stora, T., Hovius, R., Dienes, Z., Pachoud, M., Vogel, H.: Metal ion trace detection by a Chelator-modified gold electrode: a comparison of surface to bulk affinity. Langmuir 13, 5211–5214 (1997)

    Article  CAS  Google Scholar 

  73. Minamiki, T., Minami, T., Koutnik, P., Anzenbacher, P., Tokito, S.: Antibody- and label-free phosphoprotein sensor device based on an organic transistor. Anal. Chem. 88, 1092–1095 (2016)

    Article  CAS  PubMed  Google Scholar 

  74. Lacher, S., Matsuo, Y., Nakamura, E.: Molecular and supramolecular control of the work function of an inorganic electrode with self-assembled monolayer of umbrella-shaped fullerene derivatives. J. Am. Chem. Soc. 133, 16997–17004 (2011)

    Article  CAS  PubMed  Google Scholar 

  75. Credo, G.M., Su, X., Wu, K., Elibol, O.H., Liu, D.J., Reddy, B., Tsai, T.-W., Dorvel, B.R., Daniels, J.S., Bashir, R., Varma, M.: Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices. Analyst 137, 1351–1362 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ellis, G., Adatia, I., Yazdanpanah, M., Makela, S.K.: Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin. Biochem. 31, 195–220 (1998)

    Article  CAS  PubMed  Google Scholar 

  77. Minami, T., Sasaki, Y., Minamiki, T., Wakida, S.-I., Kurita, R., Niwa, O., Tokito, S.: Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor. Biosens. Bioelectron. 81, 87–91 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. Zayats, M., Kharitonov, A.B., Katz, E., Willner, I.: An integrated relay/nitrate reductase field-effect transistor for the sensing of nitrate (NO3). Analyst 126, 652–657 (2001)

    Article  CAS  PubMed  Google Scholar 

  79. Kim, D., Goldberg, I.B., Judy, J.W.: Microfabricated electrochemical nitrate sensor using double-potential-step chronocoulometry. Sens. Actuators B 135, 618–624 (2009)

    Article  CAS  Google Scholar 

  80. Monteiro, M.I.C., Ferreira, F.N., de Oliveira, N.M.M., Ávila, A.K.: Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Anal. Chim. Acta 477, 125–129 (2003)

    Article  CAS  Google Scholar 

  81. Didier, P., Lobato-Dauzier, N., Clément, N., Genot, A.J., Sasaki, Y., Leclerc, É., Minamiki, T., Sakai, Y., Fujii, T., Minami, T.: Microfluidic system with extended-gate-type organic transistor for real-time. ChemElectroChem 7, 1332–1336 (2020)

    Article  CAS  Google Scholar 

  82. Minami, T., Minamiki, T., Hashima, Y., Yokoyama, D., Sekine, T., Fukuda, K., Kumaki, D., Tokito, S.: An extended-gate type organic field effect transistor functionalised by phenylboronic acid for saccharide detection in water. Chem. Commun. 50, 15613–15615 (2014)

    Article  CAS  Google Scholar 

  83. Fujimoto, T., Awaga, K.: Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013)

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J., Panzer, M.J., He, Y., Lodge, T.P., Frisbie, C.D.: Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 129, 4532–4533 (2007)

    Article  CAS  PubMed  Google Scholar 

  85. Cho, J.H., Lee, J., Xia, Y., Kim, B., He, Y., Renn, M.J., Lodge, T.P., Daniel Frisbie, C.: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. Kergoat, L., Herlogsson, L., Braga, D., Piro, B., Pham, M.-C., Crispin, X., Berggren, M., Horowitz, G.: A water-gate organic field-effect transistor. Adv. Mater. 22, 2565–2569 (2010)

    Article  CAS  PubMed  Google Scholar 

  87. Mulla, M.Y., Tuccori, E., Magliulo, M., Lattanzi, G., Palazzo, G., Persaud, K., Torsi, L.: Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 6, 6010 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. Laiho, A., Herlogsson, L., Forchheimer, R., Crispin, X., Berggren, M.: Controlling the dimensionality of charge transport in organic thin-film transistors. Proc. Natl. Acad. Sci. USA 108, 15069–15073 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giovannitti, A., Sbircea, D.-T., Inal, S., Nielsen, C.B., Bandiello, E., Hanifi, D.A., Sessolo, M., Malliaras, G.G., McCulloch, I., Rivnay, J.: Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA 113, 12017–12022 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Minamiki, T., Hashima, Y., Sasaki, Y., Minami, T.: An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water. Chem. Commun. 54, 6907–6910 (2018)

    Article  CAS  Google Scholar 

  91. Sasaki, Y., Asano, K., Minamiki, T., Zhang, Z., Takizawa, S.-Y., Kubota, R., Minami, T.: A water-gated organic thin-film transistor for glyphosate detection: a comparative study with fluorescence sensing. Chem. Eur. J. 26, 14525–14529 (2020)

    Article  CAS  PubMed  Google Scholar 

  92. White, M.V.: The role of histamine in allergic diseases. J. Allergy Clin. Immunol. 86, 599–605 (1990)

    Article  CAS  PubMed  Google Scholar 

  93. Minami, T., Esipenko, N.A., Akdeniz, A., Zhang, B., Isaacs, L., Anzenbacher, P.: Multianalyte sensing of addictive over-the-counter (OTC) drugs. J. Am. Chem. Soc. 135, 15238–15243 (2013)

    Article  CAS  PubMed  Google Scholar 

  94. Minami, T., Esipenko, N.A., Zhang, B., Isaacs, L., Anzenbacher, P.: “Turn-on” fluorescent sensor array for basic amino acids in water. Chem. Commun. 50, 61–63 (2014)

    Article  CAS  Google Scholar 

  95. Nelson, T.L., O’Sullivan, C., Greene, N.T., Maynor, M.S., Lavigne, J.J.: Cross-reactive conjugated polymers: analyte-specific aggregative response for structurally similar diamines. J. Am. Chem. Soc. 128, 5640–5641 (2006)

    Article  CAS  PubMed  Google Scholar 

  96. Maynor, M.S., Nelson, T.L., O’Sullivan, C., Lavigne, J.J.: A food freshness sensor using the multistate response from analyte-induced aggregation of a cross-reactive poly(thiophene). Org. Lett. 9, 3217–3220 (2007)

    Article  CAS  PubMed  Google Scholar 

  97. Nelson, T.L., Tran, I., Ingallinera, T.G., Maynor, M.S., Lavigne, J.J.: Multi-layered analyses using directed partitioning to identify and discriminate between biogenic amines. Analyst 132, 1024–1030 (2007)

    Article  CAS  PubMed  Google Scholar 

  98. Del Valle, J., Gantz, I.: Novel insights into histamine H2 receptor biology. Am. J. Physiol. 273, G987–G996 (1997)

    PubMed  Google Scholar 

  99. Francis, T., Graf, A., Hodges, K., Kennedy, L., Hargrove, L., Price, M., Kearney, K., Francis, H.: Histamine regulation of pancreatitis and pancreatic cancer: a review of recent findings. Hepatobil. Surg. Nutr. 2, 216–226 (2013)

    Google Scholar 

  100. Bertho, D., Jouanin, C.: Polaron and bipolaron excitations in doped polythiophene. Phys. Rev. B 35, 626–633 (1987)

    Article  CAS  Google Scholar 

  101. Cházaro-Ruiz, L.F., Kellenberger, A., Jähne, E., Adler, H.-J., Khandelwal, T., Dunsch, L.: In situ ESR-UV-Vis-NIR spectroelectrochemical study of the p-doping of poly[2-(3-thienyl)ethyl acetate] and its hydrolyzed derivatives. Phys. Chem. Chem. Phys. 11, 6505–6513 (2009)

    Article  PubMed  CAS  Google Scholar 

  102. Enengl, C., Enengl, S., Pluczyk, S., Havlicek, M., Lapkowski, M., Neugebauer, H., Ehrenfreund, E.: Doping-induced absorption bands in P3HT: polarons and bipolarons. ChemPhysChem 17, 3836–3844 (2016)

    Article  CAS  PubMed  Google Scholar 

  103. Katayev, E.A., Ustynyuk, Y.A., Sessler, J.L.: Receptors for tetrahedral oxyanions. Coord. Chem. Rev. 250, 3004–3037 (2006)

    Article  CAS  Google Scholar 

  104. Crump, K., Crouch, E., Zelterman, D., Crump, C., Haseman, J.: Accounting for multiple comparisons in statistical analysis of the extensive bioassay data on glyphosate. Toxicol. Sci. 175, 156–167 (2020)

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Y., Bonizzoni, M.: A supramolecular sensing array for qualitative and quantitative analysis of organophosphates in water. J. Am. Chem. Soc. 136, 14223–14229 (2014)

    Article  CAS  PubMed  Google Scholar 

  106. Hamedpour, V., Sasaki, Y., Zhang, Z., Kubota, R., Minami, T.: Simple colorimetric chemosensor array for oxyanions: quantitative assay for herbicide glyphosate. Anal. Chem. 91, 13627–13632 (2019)

    Article  CAS  PubMed  Google Scholar 

  107. Zeng, D., Cheng, J., Ren, S., Sun, J., Zhong, H., Xu, E., Du, J., Fang, Q.: A new sensor for copper(II) ion based on carboxyl acid groups substituted polyfluoreneethynylene. React. Funct. Polym. 68, 1715–1721 (2008)

    Article  CAS  Google Scholar 

  108. Clarke, E.T., Rudolf, P.R., Martell, A.E., Clearfield, A.: Structural investigation of the Cu(II) chelate of N-phosphonomethylglycine X-ray crystal structure of Cu(II) [O2CCH2NHCH2PO3]·Na(H2O)3.5. Inorg. Chim. Acta. 164, 59–63 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to extend his gratitude to the committee members of the Association of Research for Host−Guest and Supramolecular Chemistry for the “SHGSC Japan Award of Excellence 2020.” The author would like to thank JSPS KAKENHI for the financial support with Grant Nos. JP20H05207 and JP20K21204. This work was also financially supported by the Noguchi Institute, JST CREST (Grant No. JPMJCR2011), and AGC Inc., which supplied the Cytop®.

Funding

The funding was supported by Japan Society for the Promotion of Science (Grant Nos. JP20H05207, JP20K21204), Noguchi Institute and Japan Science and Technology Agency (Grant No. JPMJCR2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Minami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was selected for the “SHGSC Japan Award of Excellence 2020”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, T. Organic transistor-based chemical sensors with self-assembled monolayers. J Incl Phenom Macrocycl Chem 101, 1–18 (2021). https://doi.org/10.1007/s10847-021-01050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01050-0

Keywords

Navigation