Skip to main content

Advertisement

Log in

Rapid temperature-assisted synthesis of nanoporous γ-cyclodextrin-based metal–organic framework for selective CO2 adsorption

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We present a rapid and surfactant-free temperature-assisted synthesis route to prepare γ-cyclodextrin-based metal–organic framework (γ-CD-MOF). The cubic crystals of the CD-MOF with an average edge length of 10–15 µm, specific surface area of 775 m2 g−1 and total pore volume of 0.229 cm3 g−1 were synthesized in much shorter time than conventional CD-MOFs. To show the efficiency of the synthesized CD-MOF as adsorbent of gas, the uptake of CO2 at different temperature and pressure was investigated. It is shown that the CO2 uptake increases with increasing pressure and decreasing temperature. Further microgravimetric investigation on gas adsorption at low pressure demonstrated superior gas uptake (ca. 147 mg g−1) than previous reports. At the maximum equilibrium pressure, the uptake amounts of CO2 were found to be 326 and 268 mg g−1 at 303 and 323 K, respectively. The synthesized CD-MOF has great potential to be used in gas storage and separation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdoli, Y., Razavian, M., Fatemi, S.: Bimetallic Ni–Co-based metal–organic framework: an open metal site adsorbent for enhancing CO2 capture. Appl. Organomet. Chem. 33, 1–14 (2019). https://doi.org/10.1002/aoc.5004

    Article  CAS  Google Scholar 

  2. Bien, C.E., Chen, K.K., Chien, S.C., Reiner, B.R., Lin, L.C., Wade, C.R., Ho, W.S.W.: Bioinspired metal–organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018). https://doi.org/10.1021/jacs.8b06109

    Article  CAS  PubMed  Google Scholar 

  3. Hu, Z., Wang, Y., Shah, B.B., Zhao, D.: CO2 capture in metal–organic framework adsorbents: an engineering perspective. Adv. Sustain. Syst. 3, 1800080 (2019). https://doi.org/10.1002/adsu.201800080

    Article  CAS  Google Scholar 

  4. Yazaydin, A., Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Richard, R.W., Snurr, R.Q.: Enhanced CO2 adsorption in metal–organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009). https://doi.org/10.1021/cm900049x

    Article  CAS  Google Scholar 

  5. Girimonte, R., Formisani, B., Testa, F.: CO2 adsorption in a confined fluidized bed of zeolite pellets: influence of operating velocity. Particuology 46, 67–74 (2019). https://doi.org/10.1016/j.partic.2018.08.004

    Article  CAS  Google Scholar 

  6. Furukawa, Y., Ishiwata, T., Sugikawa, K., Kokado, K., Sada, K.: Nano- and microsized cubic gel particles from cyclodextrin metal–organic frameworks. Angew. Chem. Int. Ed. 51, 10566–10569 (2012). https://doi.org/10.1002/anie.201204919

    Article  CAS  Google Scholar 

  7. Anceschi, A., Magnacca, G., Trotta, F., Zanetti, M.: Preparation and characterization of microporous carbon spheres from high amylose pea maltodextrin. RSC Adv. 7, 36117–36123 (2017). https://doi.org/10.1039/c7ra05343f

    Article  CAS  Google Scholar 

  8. Agarwal, R.A., Gupta, A.K., De, D.: Flexible Zn-MOF exhibiting selective CO2 adsorption and efficient lewis acidic catalytic activity. Cryst. Growth Des. 19, 2010–2018 (2019). https://doi.org/10.1021/acs.cgd.8b01462

    Article  CAS  Google Scholar 

  9. Maitlo, H.A., Kim, K.H., Khan, A., Szulejko, J.E., Kim, J.C., Song, H.N., Ahn, W.S.: Competitive adsorption of gaseous aromatic hydrocarbons in a binary mixture on nanoporous covalent organic polymers at various partial pressures. Environ. Res. 173, 1–11 (2019). https://doi.org/10.1016/j.envres.2019.03.028

    Article  CAS  PubMed  Google Scholar 

  10. Hasanzadeh, M., Simchia, A., Shahriyari Far, H.: Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 81, 405–414 (2020)

    Article  CAS  Google Scholar 

  11. Hasanzadeh, M., Simchi, A., Far, H.S.: Kinetics and adsorptive study of organic dye removal using water-stable nanoscale metal organic frameworks. Mater. Chem. Phys. 233, 267–275 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.050

    Article  CAS  Google Scholar 

  12. Wang, K., Li, C., Liang, Y., Han, T., Huang, H., Yang, Q.: Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chem. Eng. J. 289, 486–493 (2016). https://doi.org/10.1016/j.cej.2016.01.019

    Article  CAS  Google Scholar 

  13. Ren, H., Jin, J., Hu, J., Liu, H.: Affinity between metal–organic frameworks and polyimides in asymmetric mixed matrix membranes for gas separations. Ind. Eng. Chem. Res. 51, 10156–10164 (2012). https://doi.org/10.1021/ie300553k

    Article  CAS  Google Scholar 

  14. Zhang, H., Nai, J., Yu, L., Lou, X.W.: Metal–organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008

    Article  CAS  Google Scholar 

  15. Khan, N.A., Hasan, Z., Jhung, S.H.: Adsorptive removal of hazardous materials using metal–organic frameworks (MOFs): a review. J. Hazard. Mater. 244–245, 444–456 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  16. Hamedi, A., Trotta, F., Zarandi, M.B., Zanetti, M., Caldera, F., Anceschi, A., Nateghi, M.R.: In situ synthesis of MIL-100(Fe) at the surface of Fe3O4 @ac as highly efficient dye adsorbing nanocomposite. Int. J. Mol. Sci. 20, 5612 (2019). https://doi.org/10.3390/ijms20225612

    Article  CAS  PubMed Central  Google Scholar 

  17. Hamedi, A., Zarandi, M.B., Nateghi, M.R.: Highly efficient removal of dye pollutants by MIL-101(Fe) metal–organic framework loaded magnetic particles mediated by Poly L-Dopa. J. Environ. Chem. Eng. 7, 102882 (2019). https://doi.org/10.1016/j.jece.2019.102882

    Article  CAS  Google Scholar 

  18. Wang, L., Han, Y., Feng, X., Zhou, J., Qi, P., Wang, B.: Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016). https://doi.org/10.1016/j.ccr.2015.09.002

    Article  CAS  Google Scholar 

  19. Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T.: Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/b807080f

    Article  CAS  PubMed  Google Scholar 

  20. An, J., Rosi, N.L.: Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc. 132, 5578–5579 (2010)

    Article  CAS  Google Scholar 

  21. Peterson, G.W., Britt, D.K., Sun, D.T., Mahle, J.J., Browe, M., Demasky, T., Smith, S., Jenkins, A., Rossin, J.A.: Multifunctional purification and sensing of toxic hydride gases by CuBTC metal–organic framework. Ind. Eng. Chem. Res. 54, 3626–3633 (2015). https://doi.org/10.1021/acs.iecr.5b00458

    Article  CAS  Google Scholar 

  22. Beg, S., Rahman, M., Jain, A., Saini, S., Midoux, P., Pichon, C., Ahmad, F.J., Akhter, S.: Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications. Drug Discov. Today. 22, 625–637 (2017). https://doi.org/10.1016/j.drudis.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  23. Hamedi, A., Caldera, F., Trotta, F., Zarandi, M.B., Pedrazzo, A.R., Cecone, C.: Metal organic frameworks in medicine. Acta Sci. Pharm. Sci. 3, 107–109 (2019)

    Google Scholar 

  24. Mckinlay, A.C., Morris, R.E., Horcajada, P., Førey, G., Gref, R., Couvreur, P., Serre, C.: BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 6260–6266 (2010). https://doi.org/10.1002/anie.201000048

    Article  CAS  Google Scholar 

  25. Pedrazzo, A.R., Smarra, A., Caldera, F., Musso, G., Dhakar, N.K., Cecone, C., Hamedi, A., Corsi, I., Trotta, F.: Eco-friendly ß-cyclodextrin and linecaps polymers for the removal of heavy metals. Polymers (Basel) 11, 1658 (2019). https://doi.org/10.3390/polym11101658

    Article  CAS  Google Scholar 

  26. Li, X., Guo, T., Lachmanski, L., Manoli, F., Menendez-Miranda, M., Manet, I., Guo, Z., Wu, L., Zhang, J., Gref, R.: Cyclodextrin-based metal–organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles. Int. J. Pharm. 531, 424–432 (2017). https://doi.org/10.1016/j.ijpharm.2017.05.056

    Article  CAS  PubMed  Google Scholar 

  27. Krūkle-Bērziņa, K., Belyakov, S., Mishnev, A., Shubin, K.: Stability and phase transitions of nontoxic γ-cyclodextrin-K+ metal–organic framework in various solvents. Crystals 10, 37 (2020). https://doi.org/10.3390/cryst10010037

    Article  CAS  Google Scholar 

  28. Yan, T.K., Nagai, A., Michida, W., Kusakabe, K., Yusup, S.B.: Crystal growth of cyclodextrin-based metal–organic framework for carbon dioxide capture and separation. Procedia Eng. 148, 30–34 (2016). https://doi.org/10.1016/j.proeng.2016.06.480

    Article  CAS  Google Scholar 

  29. Smaldone, R.A., Forgan, R.S., Furukawa, H., Gassensmith, J.J., Slawin, A.M.Z., Yaghi, O.M., Stoddart, J.F.: Metal–organic frameworks from edible natural products. Angew. Chem. Int. Ed. 49, 8630–8634 (2010). https://doi.org/10.1002/anie.201002343

    Article  CAS  Google Scholar 

  30. Liu, B., He, Y., Han, L., Singh, V., Xu, X., Guo, T., Meng, F., Xu, X., York, P., Liu, Z., Zhang, J.: Microwave-Assisted Rapid Synthesis of γ-Cyclodextrin metal–organic Frameworks for Size Control and Efficient Drug Loading. Cryst. Growth Des. 17, 1654–1660 (2017). https://doi.org/10.1021/acs.cgd.6b01658

    Article  CAS  Google Scholar 

  31. Liu, B., Li, H., Xu, X., Li, X., Lv, N., Singh, V., Stoddart, J.F., York, P., Xu, X., Gref, R., Zhang, J.: Optimized synthesis and crystalline stability of γ-cyclodextrin metal–organic frameworks for drug adsorption. Int. J. Pharm. 514, 212–219 (2016). https://doi.org/10.1016/j.ijpharm.2016.09.029

    Article  CAS  PubMed  Google Scholar 

  32. Al-Ghamdi, S., Kathuria, A., Abiad, M., Auras, R.: Synthesis of nanoporous carbohydrate metal–organic framework and encapsulation of acetaldehyde. J. Cryst. Growth. 451, 72–78 (2016). https://doi.org/10.1016/j.jcrysgro.2016.07.004

    Article  CAS  Google Scholar 

  33. Kritskiy, I., Volkova, T., Surov, A., Terekhova, I.: γ-Cyclodextrin-metal organic frameworks as efficient microcontainers for encapsulation of leflunomide and acceleration of its transformation into teriflunomide. Carbohydr. Polym. 216, 224–230 (2019). https://doi.org/10.1016/j.carbpol.2019.04.037

    Article  CAS  PubMed  Google Scholar 

  34. Lampman, P., Vyvyan, K., Pavia, D.L., Kriz, G.S.: Introduction to Spectroscopy. Cengage Learning, Boston (2008)

    Google Scholar 

  35. Saha, D., Bao, Z., Jia, F., Deng, S.: Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ. Sci. Technol. 44, 1820–1826 (2010). https://doi.org/10.1021/es9032309

    Article  CAS  PubMed  Google Scholar 

  36. Wu, D., Gassensmith, J.J., Gouveîa, D., Ushakov, S., Stoddart, J.F., Navrotsky, A.: Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal–organic framework. J. Am. Chem. Soc. 135, 6790–6793 (2013). https://doi.org/10.1021/ja402315d

    Article  CAS  PubMed  Google Scholar 

  37. Vargas, D.P., Giraldo, L., Moreno-Piraján, J.C.: Calorimetric study of the CO2 adsorption on carbon materials. J. Therm. Anal. Calorim. 117, 1299–1309 (2014). https://doi.org/10.1007/s10973-014-3909-x

    Article  CAS  Google Scholar 

  38. Zhao, Z., Cui, X., Ma, J., Li, R.: Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. Int. J. Greenh. Gas Control. 1, 355–359 (2007). https://doi.org/10.1016/S1750-5836(07)00072-2

    Article  CAS  Google Scholar 

  39. Hu, Z., Faucher, S., Zhuo, Y., Un, Y., Wang, S., Zhao, D.: Combination of optimization and metalated-ligand exchange: an effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation. Chem. Eur. J. 21, 17246–17255 (2015). https://doi.org/10.1002/chem.201503078

    Article  CAS  PubMed  Google Scholar 

  40. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016). https://doi.org/10.1021/acs.chemrev.6b00173

    Article  CAS  PubMed  Google Scholar 

  41. Liang, Z., Marshall, M., Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23, 2785–2789 (2009). https://doi.org/10.1021/ef800938e

    Article  CAS  Google Scholar 

  42. Abid, H.R., Rada, Z.H., Li, Y., Mohammed, H.A., Wang, Y., Wang, S., Arandiyan, H., Tan, X., Liu, S.: Boosting CO2 adsorption and selectivity in metal–organic frameworks of MIL-96(Al) via second metal Ca coordination. RSC Adv. 10, 8130–8139 (2020). https://doi.org/10.1039/D0RA00305K

    Article  CAS  Google Scholar 

  43. Keskin, S., Sholl, D.S.: Screening metal–organic framework materials for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007). https://doi.org/10.1021/je800161m

    Article  CAS  Google Scholar 

  44. Chen, Y., Lv, D., Wu, J., Xiao, J., Xi, H., Xia, Q., Li, Z.: A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chem. Eng. J. 308, 1065–1072 (2017). https://doi.org/10.1016/j.cej.2016.09.138

    Article  CAS  Google Scholar 

  45. Wang, B., Huang, H., Lv, X.L., Xie, Y., Li, M., Li, J.R.: Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization. Inorg. Chem. 53, 9254–9259 (2014). https://doi.org/10.1021/ic5013473

    Article  CAS  PubMed  Google Scholar 

  46. Zou, R., Li, P.Z., Zeng, Y.F., Liu, J., Zhao, R., Duan, H., Luo, Z., Wang, J.G., Zou, R., Zhao, Y.: Bimetallic metal–organic frameworks: probing the Lewis acid site for CO2 conversion. Small. 12, 2334–2343 (2016). https://doi.org/10.1002/smll.201503741

    Article  CAS  PubMed  Google Scholar 

  47. Domán, A., Klébert, S., Madarász, J., Sáfrán, G., Wang, Y., László, K.: Graphene oxide protected copper benzene-1,3,5-tricarboxylate for clean energy gas adsorption. Nanomaterials 10, 1182 (2020). https://doi.org/10.3390/nano10061182

    Article  CAS  PubMed Central  Google Scholar 

  48. Cavka, J.H., Grande, C.A., Mondino, G., Blom, R.: High pressure adsorption of CO2 and CH4 on Zr-MOFs. Ind. Eng. Chem. Res. 53, 15500–15507 (2014). https://doi.org/10.1021/ie500421h

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caldera.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamedi, A., Anceschi, A., Trotta, F. et al. Rapid temperature-assisted synthesis of nanoporous γ-cyclodextrin-based metal–organic framework for selective CO2 adsorption. J Incl Phenom Macrocycl Chem 99, 245–253 (2021). https://doi.org/10.1007/s10847-020-01039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01039-1

Keywords

Navigation