Skip to main content
Log in

p-Sulfonatocalixarene versus p-thiasulfonatocalixarene: encapsulation of tenofovir disoproxil fumarate and implications to ESI-MS, HPLC, NMR, DFT and anti-MRSA activities

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The inclusion complexes of tenofovir disoproxil fumarate (TDF) with p-sulfonato-calix[4]arene (SCX4) and p-sulfanatothiacalix[4]arene (TSCX4) macrocycles are characterized through an array of experiments including 1H NMR, NOESY, HPLC, HRMS, FT-IR and PXRD in conjunction with the density functional theory. An encapsulation of TDF within SCX4 and TSCX4 macrocycles conduce 1:1 complexes those prevail over 1:2 or 1:3 Stoichiometries which exhibis distinct structural features. A loss of crystallinity accompanying the complexation ascertains the inclusion of the guest within the macrocycle. A comparison of the measured 13C NMR spectra of the complexes with individual hosts ascertains the cone conformation of SCX4 in such complexes as in its free state. It has been demonstrated that the TDF guest penetrates deeply within the cavity of SCX4 facilitating the hydrogen bonding interactions between adenine protons and the hydroxyl as well as methylene protons of the macrocycle. The measured 1H NMR spectra thus reveal large upfield signals (δ 8.35, 8.48 ppm) for adenine protons of the SCX4 complex. On the other hand, the partial encapsulation of TDF in TSCX4 reflects in the deshielding of hydroxyl protons in the measured 1H NMR spectra. The characteristic C=N and SO stretching vibrations in the infrared spectra engender’frequency shifts’ in the opposite directions compared to the individual host or guest. A simple reverse phase high performance liquid chromatography method is presented. The adenine encapsulation further has been qualitatively correlated with MRSA activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo, D.-S., Uzunova, V.D., Assaf, K.I., Lazar, A.I., Liu, Y., Nau, W.M.: Inclusion of neutral guests by water-soluble macrocyclic hosts: a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils. Supramol. Chem. 28(5–6), 384–395 (2016). https://doi.org/10.1080/10610278.2015.1105374

    Article  CAS  Google Scholar 

  2. Patil, S.V., Athare, S.V., Jagtap, A., Kodam, K.M., Gejji, S.P., Malkhede, D.D.: Encapsulation of rhodamine-6G within p-sulfonatocalix [n] arenes: NMR, photophysical behaviour and biological activities. RSC Adv. 6(111), 110206–110220 (2016)

    CAS  Google Scholar 

  3. Ueda, K., Oguni, M.: Phase and glass transitions observed by adiabatic calorimetry of host p-tert-butylcalix [4] arene and guest toluene inclusion crystal, suggesting the progress of the combined order-disorder process of the host-guest molecules. J. Phys. Chem. B 117(39), 11836–11842 (2013)

    CAS  PubMed  Google Scholar 

  4. Zhou, Y., Li, H., Yang, Y.-W.: Controlled drug delivery systems based on calixarenes. Chin. Chem. Lett. 26(7), 825–828 (2015)

    CAS  Google Scholar 

  5. Vinodh, M., Al-Azemi, T.F.: Cavitand and flexible amphiphilic resorcin [4] arenes: structural characterization and supramolecular interactions in crystal networks. J. Chem. Crystallogr. (2019). https://doi.org/10.1007/s10870-019-00819-z

    Article  Google Scholar 

  6. Basílio, N., Pischel, U.: Drug delivery by controlling a supramolecular host–guest assembly with a reversible photoswitch. Chemistry 22(43), 15208–15211 (2016). https://doi.org/10.1002/chem.201603331

    Article  CAS  PubMed  Google Scholar 

  7. Saha, S., Roy, A., Roy, K., Roy, M.N.: Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci. Rep. 6(1), 35764 (2016). https://doi.org/10.1038/srep35764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Awasthi, A.A., Singh, P.K.: Stimulus-responsive supramolecular aggregate assembly of auramine o templated by sulfated cyclodextrin. J. Phys. Chem. B 121(25), 6208–6219 (2017)

    CAS  PubMed  Google Scholar 

  9. McInnes, F.J., Anthony, N.G., Kennedy, A.R., Wheate, N.J.: Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Org. Biomol. Chem. 8(4), 765–773 (2010). https://doi.org/10.1039/B918372H

    Article  CAS  PubMed  Google Scholar 

  10. Loftsson, T.: Drug solubilization by complexation. Int. J. Pharm. 531(1), 276–280 (2017). https://doi.org/10.1016/j.ijpharm.2017.08.087

    Article  CAS  PubMed  Google Scholar 

  11. Gavvala, K., Sengupta, A., Hazra, P.: Modulation of photophysics and pka shift of the anti-cancer drug camptothecin in the nanocavities of supramolecular hosts. ChemPhysChem 14(3), 532–542 (2013)

    CAS  PubMed  Google Scholar 

  12. Filipović-Grčić, J., Bećirević-Laćan, M., Skalko, N., Jalšenjak, I.: Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes. Int. J. Pharm. 135(1–2), 183–190 (1996)

    Google Scholar 

  13. de Fátima, Â., Fernandes, S.A., Sabino, A.A.: Calixarenes as new platforms for drug design. Curr. Drug Discov. Technol. 6(2), 151–170 (2009)

    PubMed  Google Scholar 

  14. Yang, X., Li, S., Zhang, Q.-W., Zheng, Y., Bardelang, D., Wang, L.-H., Wang, R.: Concealing the taste of the Guinness World’s most bitter substance by using a synthetic nanocontainer. Nanoscale 9(30), 10606–10609 (2017). https://doi.org/10.1039/C7NR03608F

    Article  CAS  PubMed  Google Scholar 

  15. Moussa, Y.E., Ong, Y.Q.E., Perry, J.D., Cheng, Z., Kayser, V., Cruz, E., Kim, R.R., Sciortino, N., Wheate, N.J.: Demonstration of in vitro host-guest complex formation and safety of para-sulfonatocalix[8]arene as a delivery vehicle for two antibiotic drugs. J. Pharm. Sci. 107(12), 3105–3111 (2018). https://doi.org/10.1016/j.xphs.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  16. Ungaro, R., Pochini, A., Andreetti, G.D., Domiano, P.: Molecular inclusion in functionalized macrocycles Part 9 The crystal and molecular structure of p-t-butylcalix [4] arena–anisole (2:1) complex: a new type of cage inclusion compound. J. Chem. Soc. 2(2), 197–201 (1985)

    Google Scholar 

  17. Wintgens, V., Biczók, L., Miskolczy, Z.: Thermodynamics of host–guest complexation between p-sulfonatocalixarenes and 1-alkyl-3-methylimidazolium type ionic liquids. Thermochim. Acta 523(1–2), 227–231 (2011). https://doi.org/10.1016/j.tca.2011.05.030

    Article  CAS  Google Scholar 

  18. Bayrakcı, M.T., Ertul, S.E., Yilmaz, M.: Phase solubility studies of poorly soluble drug molecules by using O-phosphorylated calixarenes as drug-solubilizing agents. J. Chem. Eng. Data 57(1), 233–239 (2012)

    Google Scholar 

  19. Basílio, N., Piñeiro, A.N., Da Silva, J.P., García-Río, L.: Cooperative assembly of discrete stacked aggregates driven by supramolecular host–guest complexation. J. Org. Chem. 78(18), 9113–9119 (2013)

    PubMed  Google Scholar 

  20. Pur, F.N.: Calix [4] API-s: fully functionalized calix [4] arene-based facial active pharmaceutical ingredients. Mol. Divers. (2020). https://doi.org/10.1007/s11030-020-10042-0

    Article  PubMed  Google Scholar 

  21. Bayrakcı, M.T., Ertul, S.E., Yilmaz, M.: Transportation of poorly soluble drug molecules from the organic phase to the aqueous phase by using phosphorylated calixarenes. J. Chem. Eng. Data 56(12), 4473–4479 (2011)

    Google Scholar 

  22. Korchowiec, B., Korchowiec, J., Gorczyca, M., de Vains, J.B.R., Rogalska, E.: Molecular organization of nalidixate conjugated calixarenes in bacterial model membranes probed by molecular dynamics simulation and Langmuir monolayer studies. J. Phys. Chem. B 119(7), 2990–3000 (2015)

    CAS  PubMed  Google Scholar 

  23. Perret, F., Lazar, A.N., Coleman, A.W.: Biochemistry of the para-sulfonato-calix [n] arenes. Chem. Commun. 23, 2425–2438 (2006)

    Google Scholar 

  24. Liu, K., Liu, H., Li, Z., Li, W., Li, L.: In vitro dissolution study on inclusion complex of piperine with ethylenediamine-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. (2020). https://doi.org/10.1007/s10847-020-00980-5

    Article  Google Scholar 

  25. Granata, G., Paterniti, I., Geraci, C., Cunsolo, F., Esposito, E., Cordaro, M., Blanco, A.R., Cuzzocrea, S., Consoli, G.M.L.: Potential eye drop based on a calix[4]arene nanoassembly for curcumin delivery: enhanced drug solubility, stability, and anti-inflammatory effect. Mol. Pharm. 14(5), 1610–1622 (2017). https://doi.org/10.1021/acs.molpharmaceut.6b01066

    Article  CAS  PubMed  Google Scholar 

  26. Korchowiec, B., Orlof, M., Sautrey, G., Ben Salem, A., Korchowiec, J., Regnouf-de-Vains, J.-B., Rogalska, E.: The mechanism of metal cation binding in two nalidixate calixarene conjugates. A Langmuir film and molecular modeling study. J. Phys. Chem. B 114(32), 10427–10435 (2010)

    CAS  PubMed  Google Scholar 

  27. Khokhar, T.S., Memon, S., Memon, A.A., Bhatti, A.A., Bhatti, A.A.: Improved solubility of morin using p-sulphonatocalix [4] arene as encapsulating agent: HPLC analysis and their molecular modelling. Polycycl. Arom. Compd. (2018). https://doi.org/10.1080/10406638.2018.1464037

    Article  Google Scholar 

  28. Feleder, E., Yerino, G., Halabe, E., Carla, S., Soledad, G., Zini, E.: Single-dose bioequivalence of a new fixed-dose combination tablet containing tenofovir disoproxil fumarate and lamivudine. J. Bioequiv. 3, 236–243 (2011)

    Google Scholar 

  29. Kearney, B.P., Flaherty, J.F., Shah, J.: Tenofovir disoproxil fumarate. Clin. Pharmacokinet. 43(9), 595–612 (2004)

    CAS  PubMed  Google Scholar 

  30. Sarma, A., Das, M.K.: Formulation by design (FbD) approach to develop tenofovir disoproxil fumarate loaded nanostructured lipid carriers (NLCs) for the aptness of nose to brain delivery. J. Drug Deliv. Therapeut. 9(2), 148–159 (2019)

    Google Scholar 

  31. Anandgaonkar, V., Gupta, A., Kona, S., Talluri, M.K.: Isolation, LC–MS/MS and 2D-NMR characterization of alkaline degradants of tenofovir disoproxil fumarate. J. Pharm. Biomed. Anal. 107, 175–185 (2015)

    CAS  PubMed  Google Scholar 

  32. Sharma, R., Mehta, K.: Simultaneous spectrophotometric estimation of tenofovir disoproxil fumarate and lamivudine in three component tablet formulation containing efavirenz. Indian J. Pharm. Sci. 72(4), 527 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Purnima, B.V., Reddy, T.V.B., Rao, Y.S., Ramu, G., Ramachandran, D.: Stability indicating RP-UPLC method for assay of emtricitabine and tenofovir disoproxil fumarate in bulk and dosage forms. Am. J. Anal. Chem. 6(10), 15 (2015). https://doi.org/10.4236/ajac.2015.610077

    Article  CAS  Google Scholar 

  34. Da Silva, J.P., Jayaraj, N., Jockusch, S., Turro, N.J., Ramamurthy, V.: Aggregates of cucurbituril complexes in the gas phase. Org. Lett. 13(9), 2410–2413 (2011)

    PubMed  Google Scholar 

  35. Lee, J.W., Lee, H.H.L., Ko, Y.H., Kim, K., Kim, H.I.: Deciphering the specific high-affinity binding of cucurbit [7] uril to amino acids in water. J. Phys. Chem. B 119(13), 4628–4636 (2015)

    CAS  PubMed  Google Scholar 

  36. Gentile, D., Floresta, G., Patamia, V., Nicosia, A., Mineo, P., Rescifina, A.: Cucurbit [7] uril as a catalytic nanoreactor for one-pot synthesis in water of isoxazolidines. Org. Biomol. Chem. 18, 1194 (2020)

    CAS  PubMed  Google Scholar 

  37. Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6(4), 281 (2014)

    CAS  PubMed  Google Scholar 

  38. Lee, H.H.L., Kim, H.I.: Supramolecular analysis of monosaccharide derivatives using cucurbit[7]uril and electrospray ionization tandem mass spectrometry. Isr. J. Chem. 58(3–4), 472–478 (2018). https://doi.org/10.1002/ijch.201700073

    Article  CAS  Google Scholar 

  39. Lee, T.-C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grün, C.H., Jänis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5(5), 376 (2013)

    CAS  PubMed  Google Scholar 

  40. Osaka, I., Kondou, M., Selvapalam, N., Samal, S., Kim, K., Rekharsky, M.V., Inoue, Y., Arakawa, R.: Characterization of host–guest complexes of cucurbit [n] uril (n= 6, 7) by electrospray ionization mass spectrometry. J. Mass Spectrom. 41(2), 202–207 (2006)

    CAS  PubMed  Google Scholar 

  41. Casas-Hinestroza, J.L., Bueno, M., Ibáñez, E., Cifuentes, A.: Recent advances in mass spectrometry studies of non-covalent complexes of macrocycles: a review. Anal. Chim. Acta 1081, 32–50 (2019). https://doi.org/10.1016/j.aca.2019.06.029

    Article  CAS  PubMed  Google Scholar 

  42. Schalley, C.A., Castellano, R.K., Brody, M.S., Rudkevich, D.M., Siuzdak, G., Rebek, J.: Investigating molecular recognition by mass spectrometry: characterization of calixarene-based self-assembling capsule hosts with charged guests. J. Am. Chem. Soc. 121(19), 4568–4579 (1999)

    CAS  Google Scholar 

  43. Qi, Z., Heinrich, T., Moorthy, S., Schalley, C.A.: Gas-phase chemistry of molecular containers. Chem. Soc. Rev. 44(2), 515–531 (2015)

    CAS  PubMed  Google Scholar 

  44. Sassine, A., Martins-Júnior, H.A., Lebre, D.T., Valli, F., Pires, M.A., Vega, O., Felinto, M.C.: An electrospray ionization tandem mass spectrometric study of p-tert-butylcalix [6] arene complexation with ammonium hydroxide, and ammonium and sodium ions. Rapid Commun. Mass Spectr. 22(3), 385–393 (2008)

    CAS  Google Scholar 

  45. Bew, S.P., Barter, A.W.J., Sharma, S.V.: Mass spectroscopic investigation of bis-1,3-urea calix[4]arenes and their ability to complex N-protected α-amino acids. J. Incl. Phenom. Macrocycl. Chem. 66(1–2), 195–208 (2009). https://doi.org/10.1007/s10847-009-9687-6

    Article  CAS  Google Scholar 

  46. Bakic, M.T., Espinosa, M.S., Cindro, N., Frkanec, L., Babay, P.A., Galic, N.: UV-Vis and ESI MS/MS study of calix [4] arene derivatives and their lanthanide complexes. Croat. Chem. Acta 90(4), 679–689 (2017)

    Google Scholar 

  47. Galindo-Murillo, R., Sandoval-Salinas, M.E., et al.: In silico design of monomolecular drug carriers for the tyrosine kinase inhibitor drug imatinib based on calix- and thiacalix[n]arene host molecules: a DFT and molecular dynamics study. J. Chem. Theory Comput. 10(2), 825–834 (2014). https://doi.org/10.1021/ct4004178

    Article  CAS  PubMed  Google Scholar 

  48. Abd El-Rahman, M.K., Mazzone, G., Mahmoud, A.M., Sicilia, E., Shoeib, T.: Spectrophotometric determination of choline in pharmaceutical formulations via host-guest complexation with a biomimetic calixarene receptor. Microchem. J. 146, 735–741 (2019). https://doi.org/10.1016/j.microc.2019.01.046

    Article  CAS  Google Scholar 

  49. Khedkar, J.K., Gejji, S.P.: Binding of nitrophenol isomers to calix [n] arene (n= 4, 6) hosts. Comput. Theoret. Chem. 991, 201–211 (2012)

    CAS  Google Scholar 

  50. Lande, D.N., Gejji, S.P.: Cooperative hydrogen bonding, molecular electrostatic potentials, and spectral characteristics of partial thia-substituted calix [4] arene macrocycles. J. Phys. Chem. A 120(37), 7385–7397 (2016)

    CAS  PubMed  Google Scholar 

  51. Khedkar, J.K., Pinjari, R.V., Gejji, S.P.: Electronic structure, molecular electrostatic potentials, vibrational spectra in substituted calix [n] arenes (n= 4, 5) from density functional theory. J. Phys. Chem. A 115(38), 10624–10637 (2011)

    CAS  PubMed  Google Scholar 

  52. Tong, S.Y.C., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G., Jr.: Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28(3), 603–661 (2015). https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McLean, A., Chandler, G.: Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J. Chem. Phys. 72(10), 5639–5648 (1980)

    CAS  Google Scholar 

  54. Frisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GE (2014) Gaussian 09 Revision D. 01

  55. Chai, J.-D., Head-Gordon, M.: Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128(8), 084106 (2008). https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  56. Dennington R, Keith T, Millam J (2009) GaussView, version 5

  57. Wolinski, K., Hinton, J.F., Pulay, P.: Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 112(23), 8251–8260 (1990)

    CAS  Google Scholar 

  58. Cheeseman, J.R., Trucks, G.W., Keith, T.A., Frisch, M.J.: A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 104(14), 5497–5509 (1996)

    CAS  Google Scholar 

  59. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105(8), 2999–3094 (2005)

    CAS  PubMed  Google Scholar 

  60. Thordarson, P.: Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40(3), 1305–1323 (2011). https://doi.org/10.1039/C0CS00062K

    Article  CAS  PubMed  Google Scholar 

  61. Guzzo, R.N., Rezende, M.J.C., Kartnaller, V., Carneiro, J.W.D.M., Stoyanov, S.R., Costa, L.M.D.: Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes. J. Mol. Struct. 1157, 97–105 (2018). https://doi.org/10.1016/j.molstruc.2017.12.038

    Article  CAS  Google Scholar 

  62. Tashakkorian, H., Lakouraj, M.M., Rouhi, M.: p-Sulfonic acid calix[4]arene as an efficient catalyst for one-pot synthesis of pharmaceutically significant coumarin derivatives under solvent-free condition. Int. J. Med. Chem. 2015, 738202 (2015). https://doi.org/10.1155/2015/738202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eddaif, L., Shaban, A., Telegdi, J.: Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review. Int. J. Environ. Anal. Chem. 99(9), 824–853 (2019)

    CAS  Google Scholar 

  64. Jaime, C., De Mendoza, J., Prados, P., Nieto, P.M., Sanchez, C.: Carbon-13 NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes. J. Org. Chem. 56(10), 3372–3376 (1991). https://doi.org/10.1021/jo00010a036

    Article  CAS  Google Scholar 

  65. Brand, T., Cabrita, E.J., Berger, S.: Intermolecular interaction as investigated by NOE and diffusion studies. Prog. Nucl. Magn. Reson. Spectrosc. 46(4), 159–196 (2005)

    CAS  Google Scholar 

  66. Hibbert, D.B., Thordarson, P.: The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 52(87), 12792–12805 (2016)

    Google Scholar 

  67. Liu, Y., Guo, D.-S., Zhang, H.-Y., Ma, Y.-H., Yang, E.-C.: The structure and thermodynamics of calix [n] arene complexes with dipyridines and phenanthroline in aqueous solution studied by microcalorimetry and NMR spectroscopy. J. Phys. Chem. B 110(7), 3428–3434 (2006)

    CAS  PubMed  Google Scholar 

  68. An, J.-H., Kiyonga, A.N., Yoon, W., Ryu, H.C., Kim, J.-S., Kang, C., Park, M., Yun, H., Jung, K.: Crystal structure analysis of the first discovered stability-enhanced solid state of tenofovir disoproxil free base using single crystal x-ray diffraction. Molecules (Basel, Switzerland) 22(7), 1182 (2017). https://doi.org/10.3390/molecules22071182

    Article  CAS  PubMed Central  Google Scholar 

  69. Morales, A., Santana, A., Althoff, G., Melendez, E.: Host-guest interactions between calixarenes and Cp(2)NbCl(2). J. Organomet. Chem. 696(13), 2519–2527 (2011). https://doi.org/10.1016/j.jorganchem.2011.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Higuchi, T.C.K.: A phase solubility technique. Adv. Anal. Chem. Instrum. 4, 117–211 (1965)

    CAS  Google Scholar 

  71. Saokham, P., Muankaew, C., Jansook, P., Loftsson, T.: Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 23(5), 1161 (2018)

    PubMed Central  Google Scholar 

  72. Jambhekar, S.S., Breen, P.: Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discovery Today 21(2), 356–362 (2016)

    CAS  PubMed  Google Scholar 

  73. Loftsson, T., Brewster, M.E.: Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 101(9), 3019–3032 (2012)

    CAS  PubMed  Google Scholar 

  74. Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105(26), 7512–7516 (1983)

    CAS  Google Scholar 

  75. Safia, H., Ismahan, L., Abdelkrim, G., Mouna, C., Leila, N., Fatiha, M.: Density functional theories study of the interactions between host β-cyclodextrin and guest 8-anilinonaphthalene-1-sulfonate: molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. J. Mol. Liq. 280, 218–229 (2019)

    CAS  Google Scholar 

  76. Zhou, Z., Parr, R.G.: Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J. Am. Chem. Soc. 112(15), 5720–5724 (1990)

    CAS  Google Scholar 

  77. Guideline, I.H.T.: Validation of analytical procedures: text and methodology Q2 (R1). In: International conference on harmonization, Geneva, Switzerland, 2005

  78. Kandagal, P., Manjunatha, D., Seetharamappa, J., Kalanur, S.: RP-HPLC method for the determination of tenofovir in pharmaceutical formulations and spiked human plasma. Anal. Lett. 41(4), 561–570 (2008)

    CAS  Google Scholar 

  79. De Magaldi, S.W., Camero, T.: Suceptibilidad de Candida albicans" In vitro" mediante los posos de difusión. Bol. venez. infectol 7, 5–8 (1997)

    Google Scholar 

Download references

Acknowledgements

One of the authors, S.V.P. acknowledges supports Women Scientist (WOS-A) from the research project (SR/WOS-A/CS-87/2018 (G) DST) from the Department of Science and Technology, India. Authors thank the Central Instrumental Facility, Savitribai Phule Pune University for the instrumentation facilities. V.S.N. thanks to Savitribai Phule Pune University, Post-Doctoral Fellowship for financial support. S.P.G acknowledges support from the research projects (37(2)/14/11/2015-BRNS) from the Board of Research in Nuclear Sciences (BRNS) and University Grants Commission, New Delhi (F. No. 42-289/2013) and the National Param Supercomputing Facility at the Centre for Development of Advanced Computing (CDAC), Pune, India where the molecular modelling studies were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar P. Gejji.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarange, A.B., Patil, S.V., Malkhede, D.D. et al. p-Sulfonatocalixarene versus p-thiasulfonatocalixarene: encapsulation of tenofovir disoproxil fumarate and implications to ESI-MS, HPLC, NMR, DFT and anti-MRSA activities. J Incl Phenom Macrocycl Chem 99, 43–59 (2021). https://doi.org/10.1007/s10847-020-01022-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01022-w

Keywords

Navigation