Skip to main content
Log in

Inclusion induced water solubility and binding investigation of acenaphthene-1,2-dione with p-sulfonatocalix[4]arene

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

An increase in the water solubility of acenaphthene-1,2-dione (AD) with p-sulfonatocalix[4]arene (p-SC4) is studied by means of simple method using UV chamber and analysed quantitatively using LC. The host guest interaction of AD with p-SC4 is studied using UV–visible absorption and emission spectral studies. The electrochemical properties of AD in the presence of p-SC4 is investigated using cyclic voltammetry method. The mode of binding is investigated using 1H NMR and ROESY techniques. Computational modelling shows that there are various kinds of non-covalent interactions favour the stability of the complexes. The presence of bond critical points between phenyl rings of p-SC4 and AD molecules are confirmed through density functional theory (DFT) and atoms in molecules approaches. Our study clearly reveals that there is strong charge transfer process between p-SC4 (SO3 group) and AD (aryl C-H…O) molecule during the inclusion process. In addition to this, dispersion interaction plays a vital role in the AD absorption on p-SC4 moiety which is confirmed through BE calculations and bond critical points between aromatic clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ariga, H., Kunitake, T.: Supramolecular Chemistry - Fundamentals and Applications: Advanced Textbook. Springer-Verlag, Berlin Heidelberg (2006)

    Google Scholar 

  2. Albrecht, M.: Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry. Naturwissenschaften 94, 951–966 (2007)

    CAS  PubMed  Google Scholar 

  3. Yu, G., Jie, K., Huang, F.: Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem. Rev. 115, 7240–7303 (2015)

    CAS  PubMed  Google Scholar 

  4. Busseron, E., Ruff, Y., Moulin, E., Giuseppone, N.: Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5, 7098–7140 (2013)

    CAS  PubMed  Google Scholar 

  5. Kim, D.S., Sessler, J.L.: Calix [4] pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem. Soc. Rev. 44, 532–546 (2015)

    PubMed  Google Scholar 

  6. Muthu Mareeswaran, P., Ethiraj, B., Veerasamy, S., Kim, B., Woo, S.I., Rajagopal, S.: p-Sulfonatocalix [4] arene as a carrier for curcumin. New J. Chem. 38, 1336–1345 (2014)

    CAS  Google Scholar 

  7. Guo, D.S., Uzunova, V.D., Assaf, K.I., Lazar, A.I., Liu, Y., Nau, W.M.: Inclusion of neutral guests by water-soluble macrocyclic hosts–a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils. Supramol. Chem. 28, 384–395 (2016)

    CAS  Google Scholar 

  8. Kahwajy, N., Nematollahi, A., Kim, R.R., Church, W.B., Wheate, N.J.: Comparative macrocycle binding of the anticancer drug phenanthriplatin by cucurbit [n] urils, β-cyclodextrin and para-sulfonatocalix [4] arene: A 1H NMR and molecular modelling study. J. Incl. Phenom. Macrocycl. Chem. 87, 251–258 (2017)

    CAS  Google Scholar 

  9. Ramamurthy, V., Jockusch, S., Porel, M.: Supramolecular photochemistry in solution and on surfaces: encapsulation and dynamics of guest molecules and communication between encapsulated and free molecules. Langmuir 31, 5554–5557 (2015)

    CAS  PubMed  Google Scholar 

  10. Senthilkumaran, M., Chitumalla, R.K., Vigneshkumar, G., Rajkumar, E., Muthu Mareeswaran, P., Jang, J.: Investigation of the upper rim binding of triphenylpyrylium cation with p-sulfonatocalix [4] arene. J. Incl. Phenom. Macrocycl. Chem. 91, 161–169 (2018)

    CAS  Google Scholar 

  11. Vicens, J., Böhmer, V.: Calixarenes: A Versatile Class of Macrocyclic Compounds. Springer, Netherlands (2012)

    Google Scholar 

  12. Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit [n] urils, pillar [n] arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shinkai, S.: Calixarenes-the third generation of supramolecules. Tetrahedron 49, 8933–8968 (1993)

    CAS  Google Scholar 

  14. Kim, H.J., Lee, M.H., Mutihac, L., Vicens, J., Kim, J.S.: Host–guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 41, 1173–1190 (2012)

    CAS  PubMed  Google Scholar 

  15. Perret, F., Coleman, A.W.: Biochemistry of anionic calix [n] arenes. Chem. Commun. 47, 7303–7319 (2011)

    CAS  Google Scholar 

  16. Nimse, S.B., Kim, T.: Biological applications of functionalized calixarenes. Chem. Soc. Rev. 42, 366–386 (2013)

    CAS  PubMed  Google Scholar 

  17. Shinkai, S.: Calixarenes as new functionalized host molecules. Pure Appl. Chem. 58, 1523 (1986)

    CAS  Google Scholar 

  18. Zhao, H.X., Guo, D.S., Liu, Y.J.: Binding behaviours of p-sulfonatocalix [4] arene with gemini guests. Phys. Chem. B 117, 1978–1987 (2013)

    CAS  Google Scholar 

  19. Saravanan, C., Senthilkumaran, M., Ashwin, B.C.M.A., Suresh, P., MuthuMareeswaran, P.: Spectral and electrochemical investigation of 1, 8-diaminonaphthalene upon encapsulation of p-sulfonatocalix [4] arene. J. Incl. Phenom. Macrocycl. Chem. 88, 239–246 (2017)

    CAS  Google Scholar 

  20. Shinkai, S., Mori, S., Tsubaki, T., Sone, T., Manabe, O.: New water-soluble host molecules derived from calix [6] arene. Tetrahedron Lett. 25, 5315–5318 (1984)

    CAS  Google Scholar 

  21. Kuboyama, A., Yabe, S.: Phosphorescence bands of quinones and α-diketones. Bull. Chem. Soc. Jpn. 40, 2475–2479 (1967)

    CAS  Google Scholar 

  22. Das, A., Choudhury, D., Chakrabarty, S., Bhattacharya, A., Chakrabarti, G.: Acenaphthenequinone induces cell cycle arrest and mitochondrial apoptosis via disruption of cellular microtubules. Toxicol. Res. 1, 171–185 (2012)

    CAS  Google Scholar 

  23. Jakober, C.A., Charles, M.J., Kleeman, M.J., Green, P.G.: LC− MS analysis of carbonyl compounds and their occurrence in diesel emissions. Anal. Chem. 78, 5086–5093 (2006)

    CAS  PubMed  Google Scholar 

  24. Chung, S.W., Chung, H.Y., Toriba, A., Kameda, T., Tang, N., Kizu, R., Hayakawa, K.: An environmental quinoid polycyclic aromatic hydrocarbon, acenaphthenequinone, modulates cyclooxygenase-2 expression through reactive oxygen species generation and nuclear factor kappa B activation in A549 cells. Toxicol. Sci. 95, 348–355 (2007)

    CAS  PubMed  Google Scholar 

  25. Bian, W., Zheng, F., Zhu, G., Xu, X.: Laser flash photolysis study on the quenching reaction of the excited triplet state of acenaphthenequinone by antioxidant vitamin C. Res. Chem. Intermed. 41, 3409–3417 (2015)

    CAS  Google Scholar 

  26. Kuboyama, A., Matsuzaki, S.Y.: The cyclodextrin–quinone inclusion compounds in an aqueous solution at 77 K. II. 9, 10-phenanthrenequinone and acenaphthenequinone. Bull. Chem. Soc. Jpn. 59, 1–5 (1986)

    CAS  Google Scholar 

  27. Madasamy, K., Gopi, S., Senthil Kumaran, M., Radhakrishnan, S., Velayutham, D., Muthu Mareeswaran, P., Kathiresan, M.: A supramolecular investigation on the interactions between ethyl terminated bis–viologen derivatives with sulfonato calix [4] arenes. ChemistrySelect 2, 1175–1182 (2017)

    CAS  Google Scholar 

  28. Connors, K.A.: Binding Constants: The Measurement of Molecular Complex Stability. Wiley, Hoboken (1987)

    Google Scholar 

  29. Muthu Mareeswaran, P., Prakash, M., Subramanian, V., Rajagopal, S.: Recognition of aromatic amino acids and proteins with p-sulfonatocalix[4]arene—A luminescence and theoretical approach. J. Phys. Org. Chem. 25, 1217–1227 (2012)

    CAS  Google Scholar 

  30. Ashwin, B.M., Herculin Arun Baby, A., Prakash, M., Hochlaf, M., Muthu Mareeswaran, P.: A combined experimental and theoretical study on p- sulfonatocalix[4]arene encapsulated 7-methoxycoumarin. J. Phys. Org. Chem. 31, 3788 (2018)

    Google Scholar 

  31. Prakash, M., Sakhavand, N., Shahsavari, R.: H2, N2, and CH4 gas adsorption in zeolitic imidazolate framework-95 and-100: ab initio based grand canonical monte carlo simulations. J. Phys. Chem. C. 117, 24407–24416 (2013)

    CAS  Google Scholar 

  32. Prakash, M., Gopalsamy, K., Subramanian, V.: Studies on the structure, stability, and spectral signatures of hydride ion-water clusters. J. Chem. Phys. 135, 214308 (2011)

    CAS  PubMed  Google Scholar 

  33. Kumar, S., Biswas, P., Kaul, I., Das, A.: Competition between hydrogen bonding and dispersion interactions in the indole··· pyridine dimer and (Indole) 2··· pyridine trimer studied in a supersonic jet. J. Phys. Chem. A. 115, 7461 (2011)

    CAS  PubMed  Google Scholar 

  34. Boussouf, K., Boulmene, R., Prakash, M., Komiha, N., Taleb, M., Al-Mogren, M.M., Hochlaf, M.: Characterization of Zn q+–imidazole (q= 0, 1, 2) organometallic complexes: DFT methods vs. standard and explicitly correlated post-Hartree–Fock methods. Phys. Chem. Chem. Phys. 17, 14417–14426 (2015)

    CAS  PubMed  Google Scholar 

  35. Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158 (1999)

    CAS  Google Scholar 

  36. Solomon, R.V., Bella, A.P., Vedha, S.A., Venuvanalingam, P.: Designing benzosiloles for better optoelectronic properties using DFT & TDDFT approaches Phys. Chem. Chem. Phys. 14, 14229–14237 (2012)

    Google Scholar 

  37. Prakash, M., Chambaud, G., Al-Mogren, M.M., Hochlaf, M.: Role of size and shape selectivity in interaction between gold nanoclusters and imidazole: a theoretical study. J. Mol. Model. 20, 2534 (2014)

    PubMed  Google Scholar 

  38. Boussouf, K., Khairat, T., Prakash, M., Komiha, N., Chambaud, G., Hochlaf, M.: Structure, spectroscopy, and bonding within the Zn q+–Imidazole n (q= 0, 1, 2; n= 1–4) clusters and implications for zeolitic imidazolate frameworks and Zn–enzymes. J. Phys. Chem. A. 119, 11928–11940 (2015)

    CAS  PubMed  Google Scholar 

  39. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J., Gaussian Inc., Wallingford CT (2016)

  40. Boys, S.F., Bernardi, F.D.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    CAS  Google Scholar 

  41. Grimme, S.: Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006)

    PubMed  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Google Scholar 

  43. Chandrasekaran, S., Sameena, Y., Enoch, I.V.M.V., Santhanam, V.: Binding of the host-guest complex of 7-aminoflavone/β-cyclodextrin with calf thymus DNA: a spectroscopic and molecular docking study. J. Solut. Chem. 43, 1132–1146 (2014)

    CAS  Google Scholar 

  44. Diao, G., Liu, Y.: The electrochemical behavior of p-sulfonated sodium salt of calix[6]arene. Electroanalysis 17, 1279–1284 (2005)

    CAS  Google Scholar 

  45. Pailleret, A., Magan-Oliva, N., Ollivier, S., Arrigan, D.W.: Electrochemical oxidation of a hexasulfonated calix [6] arene. J. Electroanal. Chem. 508, 81–88 (2001)

    CAS  Google Scholar 

  46. Paramasivaganesh, K., Srinivasan, K., Manivel, A., Anandan, S., Sivakumar, K., Radhakrishnan, S., Stalin, T.: Studies on inclusion complexation between 4, 4′-dihydroxybiphenyl and β-cyclodextrin by experimental and theoretical approach. J. Mol. Struct. 1048, 399–409 (2013)

    CAS  Google Scholar 

  47. Bakirci, H., Koner, A.L., Nau, W.M.: Binding of inorganic cations by p-sulfonatocalix [4] arene monitored through competitive fluorophore displacement in aqueous solution. Chem. Commun. 43, 5411–5413 (2005)

    Google Scholar 

  48. ten Eikelder, H.M.M., Markvoort, A.J., de Greef, T.F.A., Hilbers, P.A.J.: An equilibrium model for chiral amplification in supramolecular polymers. J. Phys. Chem. B. 116, 5291–5301 (2012)

    PubMed  Google Scholar 

  49. Francisco, V., Basilio, N., García-Río, L.: Counterion exchange as a decisive factor in the formation of host: guest complexes by p-sulfonatocalix [4] arene. J. Phys. Chem. B. 116, 5308–5315 (2012)

    CAS  PubMed  Google Scholar 

  50. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Clarendon Press, Oxford (1990)

    Google Scholar 

  51. Popelier, P.L.A.: Atoms in Molecules: An Introduction. Prentice Hall, New York (2000)

    Google Scholar 

  52. Biegler-Konig, F., Schonbohm, J., Derdau, R., Bayles, D., Bader, R.F.W.: AIM 2000, version 1. Bielefeld, Germany (2000)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Department of science and Technology (DST INSPIRE) [Project number—IFA14/ CH-147], India and M. Senthilkumaran thanks to DST-PURSE Scheme (No. SR/PURSE Phase 2/38 (G)) for financial assistance. We also thank the financial support from RUSA 2.0 Grant sanctioned vide Letter No. F. 24-51/2014-U, Policy (TNMulti-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paulpandian Muthu Mareeswaran or Muthuramalingam Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumaran, M., Saravanan, C., Ashwin, B.C.M.A. et al. Inclusion induced water solubility and binding investigation of acenaphthene-1,2-dione with p-sulfonatocalix[4]arene. J Incl Phenom Macrocycl Chem 98, 105–115 (2020). https://doi.org/10.1007/s10847-020-01017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01017-7

Keywords

Navigation