Probing the interaction of midazolam with human serum albumin: a biophysical investigation

Abstract

Herein, the spectroscopic methods were applied for investigating the interaction between human serum albumin (HSA) and midazolam in simulated physiological environments. The fluorescence quenching of HSA by midazolam followed the static mode. The association constant at 293 K was obtained as 1.73 × 104 M−1 with probably one binding site between midazolam and HSA. The results of thermodynamic parameters revealed that the hydrogen bonding was the dominating force in the interaction. The results of UV–Vis spectra, synchronous fluorescence, and circular dichroism results showed that binding with midazolam subtly changed the HSA’s conformation along with the secondary structure. The results of Förster resonance energy transfer showed a possible 3.48 nm energy transfer distance with Trp-214 to midazolam. This study aimed to provide valuable information for further research on pharmacological mechanisms and the toxicological and distribution of midazolam in vivo.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Lu, D.W., Zhao, X.C., Zhao, Y.C., Zhang, B.C., Zhang, B., Geng, M.Y., Liu, R.T.: Binding of Sudan II and Sudan IV to bovine serum albumin: comparison studies. Food Chem. Toxicol. 49(12), 3158–3164 (2011)

    CAS  Article  Google Scholar 

  2. 2.

    Soltanabadi, O., Atri, M.S., Bagheri, M.: Spectroscopic analysis, docking and molecular dynamics simulation of the interaction of cinnamaldehyde with human serum albumin. J. Incl. Phenom. Macrocycl. Chem. 91(3–4), 189–197 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    Meloun, B., Moravek, L., Kostka, V.: Complete amino acid sequence of human serum albumin. FEBS Lett. 58(1), 134–137 (1975)

    CAS  Article  Google Scholar 

  4. 4.

    Reves, J.D., Fragen, R.J., Vinik, H.R., Greenblatt, D.J.: Midazolam: pharmacology and uses. Anesthesiology 62(3), 310–324 (1985)

    CAS  Article  Google Scholar 

  5. 5.

    Allonen, H., Ziegler, G., Klotz, U.: Midazolam kinetics. Clin. Pharmacol. Ther. 30(5), 653–661 (1981)

    CAS  Article  Google Scholar 

  6. 6.

    Khan, S.N., Islam, B., Khan, A.U.: Probing midazolam interaction with human serum albumin and its effect on structural state of protein. Int. J. Integ. Biol 1, 102–112 (2007)

    CAS  Google Scholar 

  7. 7.

    Tang, C.-R., Cao, G.-Z., Hu, L.-F., Xu, R.-A., Gao, X.-C., Zheng, Y.-M.: Interaction between midazolam and human serum albumin by fluorescence spectrum, China. Pharmacy 41, 22 (2012)

    Google Scholar 

  8. 8.

    Zhao, X., Lu, D., Liu, Q.S., Li, Y., Feng, R., Hao, F., Qu, G., Zhou, Q., Jiang, G.: Hematological effects of gold nanorods on erythrocytes: hemolysis and hemoglobin conformational and functional changes. Adv. Sci. 4(12), 1700296 (2017)

    Article  Google Scholar 

  9. 9.

    Dorraji, M.S.S., Azar, V.P., Rasoulifard, M.H.: Interaction between deferiprone and human serum albumin: multi-spectroscopic, electrochemical and molecular docking methods. Eur. J. Pharm. Sci. 64, 9–17 (2014)

    Article  Google Scholar 

  10. 10.

    Zhao, X.C., Liu, R.T., Chi, Z.X., Teng, Y., Qin, P.F.: New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J. Phys. Chem. B 114(16), 5625–5631 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    Mandeville, J.S., Tajmir-Riahi, H.A.: Complexes of dendrimers with bovine serum albumin. Biomacromol 11(2), 465–472 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    Tod, M., Mir, O., Bancelin, N., Coriat, R., Thomas-Schoemann, A., Taieb, F., Boudou-Rouquette, P., Ropert, S., Michels, J., Abbas, H.: Functional and clinical evidence of the influence of sorafenib binding to albumin on sorafenib disposition in adult cancer patients. Pharm. Res. 28(12), 3199–3207 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    Punith, R., Seetharamappa, J.: Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole. Spectrochim Acta Part A 92, 37–41 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    Hebia, C., Bekale, L., Chanphai, P., Agbebavi, J., Tajmir-Riahi, H.A.: Trypsin inhibitor complexes with human and bovine serum albumins: TEM and spectroscopic analysis. J. Photochem. Photobiol. B 130, 254–259 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    Zhao, X., Hao, F., Lu, D., Liu, W., Zhou, Q., Jiang, G.: Influence of the surface functional group density on the carbon-nanotube-induced α-chymotrypsin structure and activity alterations. ACS Appl. Mater. Interfaces. 7(33), 18880–18890 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Jana, S., Dalapati, S., Ghosh, S., Guchhait, N.: Study of microheterogeneous environment of protein Human Serum Albumin by an extrinsic fluorescent reporter: a spectroscopic study in combination with Molecular Docking and Molecular Dynamics Simulation. J Photochem Photobiol B 112, 48–58 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    Zhao, X., Liu, R., Teng, Y., Liu, X.: The interaction between Ag(+) and bovine serum albumin: a spectroscopic investigation. Sci. Total Environ. 409(5), 892–897 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    Kitamura, M., Murakami, K., Yamada, K., Kawai, K., Kunishima, M.: Binding of sulforhodamine B to human serum albumin: a spectroscopic study. Dyes Pigm. 99(3), 588–593 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    Zheng, Y.-R., Suntharalingam, K., Johnstone, T.C., Yoo, H., Lin, W., Brooks, J.G., Lippard, S.J.: Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc. 136(24), 8790–8798 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    Xu, C., Zhao, X., Wang, L., Zhang, X., Wang, Y., Lan, J.: Protein conjugation with gold nanoparticles: spectroscopic and thermodynamic analysis on the conformational and activity of serum albumin. J. Nanosci. Nanotechnol. 18(11), 7818–7823 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    Xu, F., Zhang, L., He, L., Gu, W., Fang, F., Wu, Q., Zhao, B.: Molecular mechanism on the interaction between alisols and human serum albumin. Acta Chim. Sinica 69(19), 2228–2234 (2011)

    CAS  Google Scholar 

  22. 22.

    Bolli, A., Marino, M., Rimbach, G., Fanali, G., Fasano, M., Ascenzi, P.: Flavonoid binding to human serum albumin. Biochem. Biophys. Res. Commun. 398(3), 444–449 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    Hussein, B.H.M.: Spectroscopic studies of 7, 8-dihydroxy-4-methylcoumarin and its interaction with bovine serum albumin. J. Lumin. 131(5), 900–908 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    Gokara, M., Sudhamalla, B., Amooru, D.G., Subramanyam, R.: Molecular interaction studies of trimethoxy flavone with human serum albumin. PLoS ONE 5(1), e8834 (2010)

    Article  Google Scholar 

  25. 25.

    Zhao, X., Sheng, F., Zheng, J., Liu, R.: Composition and stability of anthocyanins from purple solanum tuberosum and their protective influence on Cr(VI) targeted to bovine serum albumin. J. Agric. Food Chem. 59(14), 7902–7909 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    Wang, C.-X., Ye, L., Yan, F.-F., Wang, N., Yu, P.-L.: Spectroscopic studies on the interaction between Rifabutin and human serum albumin. Chem. J. Chin. Univer. Chin. 28(12), 2280–2283 (2007)

    CAS  Google Scholar 

  27. 27.

    Liu, Y., Chen, M., Bian, G., Liu, J., Song, L.: Spectroscopic investigation of the interaction of the toxicant, 2-naphthylamine, with bovine serum albumin. J. Biochem. Mol. Toxicol. 25(6), 362–368 (2011)

    Article  Google Scholar 

  28. 28.

    Zhao, X., Lu, D., Hao, F., Liu, R.: Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. J Hazard. Mater. 292, 98–107 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    Chanphai, P., Tajmir-Riahi, H.: Tea polyphenols bind serum albumins: a potential application for polyphenol delivery. Food Hydrocolloids 89, 461–467 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Chowdhury, R., Chattoraj, S., Sen Mojumdar, S., Bhattacharyya, K.: FRET between a donor and an acceptor covalently bound to human serum albumin in native and non-native states. Phys. Chem. Chem. Phys. 15(38), 16286–16293 (2013)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kun Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 2252 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhu, Y. & Xie, K. Probing the interaction of midazolam with human serum albumin: a biophysical investigation. J Incl Phenom Macrocycl Chem (2020). https://doi.org/10.1007/s10847-020-01016-8

Download citation

Keywords

  • Human serum albumin
  • Midazolam
  • Interaction mechanism
  • Spectroscopy