Skip to main content
Log in

Aqueous solubility of kinase inhibitors: III the effect of acidic counter ion on the dovitinib/γ-cyclodextrin complexation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Dovitinib, a hydrophobic kinase inhibitor (KI), is lipophilic anticancer agent that forms water-soluble complexes with cyclodextrins (CDs). However, dovitinib’s very low intrinsic solubility hampers the complex formation and, consequently, the CD solubilization. The aim of the study was to enhance the CD solubilization through formation of more water soluble dovitinib salts. When dovitinib is unionized (i.e. at pH above its pKa value) the phase-solubility profile of the binary dovitinib/γCD complex is of Bs-type with K1:1 of 684 M−1. Then the complex has limited solubility in water. Upon protonization, (i.e. at pH below the pKa value) the solubility of dovitinib was increased but the increase was dependent on the negatively charged counter ion. Citrate, acetate, EDTA and chloride resulted in the greatest solubility enhancement and, thus, were selected to further studies. The ternary phase-solubility profiles of dovitinib/γCD/counter ion were also of Bs-type while those of dovitinib/HPγCD/counter ion and dovitinib/SBEγCD/counter ion were of AN-type. The counter ions had greater solubilizing effect in SBEγCD solutions than in γCD and HPγCD solutions. This is due to the influence of charge-charge interaction between the positively charged dovitinib and negatively charged SBEγCD. Citrate was the most effective counter ion particularly in aqueous SBEγCD solutions. The complexation was verified by NMR. The highest dovitinib flux through semi-permeable membrane was observed from medium containing dovitinib/CDs/citrate complexes. In conclusion, citrate provided the highest dovitinib solubilization and complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available within this published article and its supplementary information files.

References

  1. Porta, C., Giglione, P., Liguigli, W., Paglino, C.: Dovitinib (CHIR258, TKI258): structure, development and preclinical and clinical activity. Future Oncol. (London, England). 11(1), 39–50 (2015). https://doi.org/10.2217/fon.14.208

    Article  CAS  Google Scholar 

  2. Benet, L.Z.: The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J. Pharm. Sci. 102(1), 34–42 (2013). https://doi.org/10.1002/jps.23359

    Article  CAS  PubMed  Google Scholar 

  3. Herbrink, M., Schellens, J.H., Beijnen, J.H., Nuijen, B.: Inherent formulation issues of kinase inhibitors. J. Controlled Release 239, 118–127 (2016). https://doi.org/10.1016/j.jconrel.2016.08.036

    Article  CAS  Google Scholar 

  4. Remko, M., Boháč, A., Kováčiková, L.: Molecular structure, pKa, lipophilicity, solubility, absorption, polar surface area, and blood brain barrier penetration of some antiangiogenic agents. Struct. Chem. 22(3), 635–648 (2011). https://doi.org/10.1007/s11224-011-9741-z

    Article  CAS  Google Scholar 

  5. Praphanwittaya, P., Saokham, P., Jansook, P., Loftsson, T.: Aqueous solubility of kinase inhibitors: I the effect of hydrophilic polymers on their γ-cyclodextrin solubilization. J. Drug Deliv. Sci. Technol. 55, 101462 (2020). https://doi.org/10.1016/j.jddst.2019.101462

    Article  CAS  Google Scholar 

  6. Serajuddin, A.T.: Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 59(7), 603–616 (2007). https://doi.org/10.1016/j.addr.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  7. Loftsson, T., Magnusdottir, A., Masson, M., Sigurjonsdottir, J.F.: Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 91(11), 2307–2316 (2002). https://doi.org/10.1002/jps.10226

    Article  CAS  PubMed  Google Scholar 

  8. Saokham, P., Muankaew, C., Jansook, P., Loftsson, T.: Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules (2018). https://doi.org/10.3390/molecules23051161

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59(7), 645–666 (2007). https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  10. Saokham, P., Loftsson, T.: γ-Cyclodextrin. Int. J. Pharm. 516(1), 278–292 (2017). https://doi.org/10.1016/j.ijpharm.2016.10.062

    Article  CAS  PubMed  Google Scholar 

  11. Loftsson, T., Saokham, P., Sá Couto, A.R.: Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions. Int. J. Pharm. 560, 228–234 (2019). https://doi.org/10.1016/j.ijpharm.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  12. Loftsson, T., Stefansson, E.: Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int. J. Pharm. 531(2), 413–423 (2017). https://doi.org/10.1016/j.ijpharm.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  13. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387(1), 199–208 (2010). https://doi.org/10.1016/j.ijpharm.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  14. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329(1), 1–11 (2007). https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  15. Loftsson, T., Jarho, P., Masson, M., Jarvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2(2), 335–351 (2005). https://doi.org/10.1517/17425247.2.1.335

    Article  CAS  PubMed  Google Scholar 

  16. Munro, I.C., Newberne, P.M., Young, V.R., Bar, A.: Safety assessment of gamma-cyclodextrin. Regul. Toxicol. Pharmacol. 39(1), S3–S13 (2004). https://doi.org/10.1016/j.yrtph.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  17. Loftsson, T., Brewster, M.E.: Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 101(9), 3019–3032 (2012). https://doi.org/10.1002/jps.23077

  18. Jansook, P., Ogawa, N., Loftsson, T.: Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535(1–2), 272–284 (2018). https://doi.org/10.1016/j.ijpharm.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  19. Kurkov, S.V., Loftsson, T.: Cyclodextrins. Int. J. Pharm. 453(1), 167–180 (2013). https://doi.org/10.1016/j.ijpharm.2012.06.055

    Article  CAS  PubMed  Google Scholar 

  20. Okimoto, K., Rajewski, R.A., Uekama, K., Jona, J.A., Stella, V.J.: The interaction of charged and uncharged drugs with neutral (HP-beta-CD) and anionically charged (SBE7-beta-CD) beta-cyclodextrins. Pharm. Res. 13(2), 256–264 (1996). https://doi.org/10.1023/a:1016047215907

    Article  CAS  PubMed  Google Scholar 

  21. Zia, V., Rajewski, R.A., Stella, V.J.: Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7M-beta-CD to HP-beta-CD. Pharm. Res. 18(5), 667–673 (2001). https://doi.org/10.1023/a:1011041628797

    Article  CAS  PubMed  Google Scholar 

  22. Gupta, D., Bhatia, D., Dave, V., Sutariya, V., Varghese Gupta, S.: Salts of therapeutic agents: chemical, physicochemical, and biological considerations. Molecules (Basel, Switzerland) (2018). https://doi.org/10.3390/molecules23071719

  23. Mura, P., Faucci, M.T., Manderioli, A., Bramanti, G.: Multicomponent systems of econazole with hydroxyacids and cyclodextrins. J. Incl. Phenom. Macrocyclic Chem. 39(1), 131–138 (2001). https://doi.org/10.1023/A:1008114411503

    Article  CAS  Google Scholar 

  24. Gould, P.L.: Salt selection for basic drugs. Int. J. Pharm. 33(1), 201–217 (1986). https://doi.org/10.1016/0378-5173(86)90055-4

    Article  CAS  Google Scholar 

  25. Tong, W.Q., Whitesell, G.: In situ salt screening—a useful technique for discovery support and preformulation studies. Pharm. Dev. Technol. 3(2), 215–223 (1998). https://doi.org/10.3109/10837459809028498

    Article  CAS  PubMed  Google Scholar 

  26. Cerreia Vioglio, P., Chierotti, M.R., Gobetto, R.: Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 117, 86–110 (2017). https://doi.org/10.1016/j.addr.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  27. Cruz-Cabeza, A.J.: Acid–base crystalline complexes and the pKa rule. CrystEngComm 14(20), 6362–6365 (2012). https://doi.org/10.1039/C2CE26055G

    Article  CAS  Google Scholar 

  28. Lee, H.: Pharmaceutical Industry Practices on Genotoxic Impurities. CRC Press, London (2014)

    Book  Google Scholar 

  29. Higuchi, T., Connors, K.A.: Phase-solubility techniques. In: C.N.R. (ed.) Advances in Analytical Chemistry and Instrumentation, vol. 4. pp. 117–212. Wiley, New York (1965)

  30. Fenyvesi, E., Vikmon, M., Szeman, J., Redenti, E., Delcanale, M., Ventura, P., Szejtli, J.: Interaction of hydroxy acids with β-cyclodextrin. J. Incl. Phenom. Macrocyclic Chem. 33(3), 339–344 (1999). https://doi.org/10.1023/A:1008094702632

    Article  CAS  Google Scholar 

  31. Ueno, A., Takahashi, K., Osa, T.: Photocontrol of catalytic activity of capped cyclodextrin. J. Chem. Soc. Chem. Commun. 3, 94–96 (1981). https://doi.org/10.1039/C39810000094

    Article  Google Scholar 

  32. Redenti, E., Szente, L., Szejtli, J.: Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci. 89(1), 1–8 (2000).

    Article  CAS  Google Scholar 

  33. Muankaew, C., Jansook, P., Stefansson, E., Loftsson, T.: Effect of gamma-cyclodextrin on solubilization and complexation of irbesartan: influence of pH and excipients. Int. J. Pharm. 474(1–2), 80–90 (2014). https://doi.org/10.1016/j.ijpharm.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  34. Amiri, S., Amiri, S.: Cyclodextrins: Properties and Industrial Applications. Wiley, New York (2017)

    Book  Google Scholar 

  35. Dufour, G., Evrard, B., de Tullio, P.: Rapid quantification of 2-hydroxypropyl-β-cyclodextrin in liquid pharmaceutical formulations by 1H nuclear magnetic resonance spectroscopy. Eur. J. Pharm. Sci. 73, 20–28 (2015). https://doi.org/10.1016/j.ejps.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  36. Luna, E.A., Vander Velde, D.G., Tait, R.J., Thompson, D.O., Rajewski, R.A., Stella, V.J.: Isolation and characterization by NMR spectroscopy of three monosubstituted 4-sulfobutyl ether derivatives of cyclomaltoheptaose (beta-cyclodextrin). Carbohydr. Res. 299(3), 111–118 (1997). https://doi.org/10.1016/s0008-6215(97)00006-2

    Article  CAS  PubMed  Google Scholar 

  37. Maeda, H., Tanaka, R., Nakayama, H.: Inclusion complexes of trihexyphenidyl with natural and modified cyclodextrins. SpringerPlus 4(1), 218 (2015). https://doi.org/10.1186/s40064-015-0986-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Praphanwittaya, P., Saokham, P., Jansook, P., Loftsson, T.: Aqueous solubility of kinase inhibitors: II the effect of hexadimethrine bromide on the dovitinib/γ-cyclodextrin complexation. J. Drug Deliv. Sci. Technol. 55, 101463 (2020). https://doi.org/10.1016/j.jddst.2019.101463

    Article  CAS  Google Scholar 

  39. Ribeiro, L., Carvalho, R.A., Ferreira, D.C., Veiga, F.J.: Multicomponent complex formation between vinpocetine, cyclodextrins, tartaric acid and water-soluble polymers monitored by NMR and solubility studies. Eur. J. Pharm. Sci. 24(1), 1–13 (2005). https://doi.org/10.1016/j.ejps.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Djedaïni, F., Lin, S.Z., Perly, B., Wouessidjewe, D.: High-field nuclear magnetic resonance techniques for the investigation of a β-cyclodextrin:indomethacin inclusion complex. J. Pharm. Sci. 79(7), 643–646 (1990). https://doi.org/10.1002/jps.2600790721

    Article  PubMed  Google Scholar 

  41. Zhao, R., Tan, T., Sandstrom, C.: NMR studies on puerarin and its interaction with beta-cyclodextrin. J. Biol. Phys. 37(4), 387–400 (2011). https://doi.org/10.1007/s10867-011-9221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zabiszak, M., Nowak, M., Taras-Goslinska, K., Kaczmarek, M.T., Hnatejko, Z., Jastrzab, R.: Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J. Inorg. Biochem. 182, 37–47 (2018). https://doi.org/10.1016/j.jinorgbio.2018.01.017

    Article  CAS  PubMed  Google Scholar 

  43. Zelenina, T.E., Zelenin, O.Y.: Complexation of citric and tartaric acids with Na and K ions in aqueous solution. Russ. J. Coord. Chem. 31(4), 235–242 (2005). https://doi.org/10.1007/s11173-005-0083-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by the University of Iceland.

Funding

This research was granted by Icelandic center of Research (RANNÍS).

Author information

Authors and Affiliations

Authors

Contributions

Pitsiree Praphanwittaya: investigation, formal analysis, data curation, writing—original draft. Phatsawee Jansook: Methodology. Thorsteinn Loftsson: Funding acquisition, Supervision, Writing—original draft.

Corresponding author

Correspondence to Thorsteinn Loftsson.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. The work was performed by Pitsiree Praphanwittaya and will be part of her PhD dissertation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praphanwittaya, P., Jansook, P. & Loftsson, T. Aqueous solubility of kinase inhibitors: III the effect of acidic counter ion on the dovitinib/γ-cyclodextrin complexation. J Incl Phenom Macrocycl Chem 98, 57–67 (2020). https://doi.org/10.1007/s10847-020-01009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01009-7

Keywords

Navigation