Skip to main content

Advertisement

Log in

Host–guest interaction between 20(S)-protopanaxatriol and three polyamine-modified β-cyclodextrins: preparation, characterization, inclusion modes, and solubilization

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

20(S)-protopanaxatriol (PPT) is a kind of tetracyclic triterpenoid, which is found in the roots of ginseng. It is well known as a potential herbal medicine or healthcare product. However, given its poor water solubility, its application has been limited. In this study, we successfully synthesized a novel mono-[6-(N,N-bis(3-aminopropyl)ethylenediamine)-6-deoxy]-β-cyclodextrin. We prepared inclusion complexes of PPT with three polyamine-modified β-cyclodextrins (CDs) (H1, H2, and H3) of different lengths by the coprecipitation method, aiming at enhancing the aqueous solubility of PPT. The host–guest inclusion complexes of H1, H2, and H3 with PPT were characterized via 1H NMR, XRD, FT-IR spectra, and SEM technology, and the inclusion modes were analyzed by 2D ROESY. The stability constant (Ks), inclusion ratios, and solubility of H1, H2, and H3 with PPT were determined via the phase solubility method. The stability constants (K1:1) were found to be 182.6, 94.2, and 524.4 M−1 for H1/PPT, H2/PPT, and H3/PPT inclusion complexes, with AL-, AN-, and BS-type curves, respectively. That is, when the stoichiometric ratio was 1:1, H3 (with longest-length chain) displayed the strongest binding ability with PPT. The host–guest size/shape-fit relationship and hydrogen bond interaction play a role in improving the stability of H1/PPT, H2/PPT, and H3/PPT inclusion complexes. Through complexation with H1, H2, and H3, the apparent solubility of PPT was obviously increased from the initial value of 0.062 mg/L to 5.1, 3.0, and 7.5 g/L, respectively. Among the three CDs, the solubilization effect of PPT with H3 was the best. Furthermore, H1/PPT, H2/PPT, and H3/PPT inclusion complexes exhibited some activity in inhibiting LPS-induced nitric oxide (NO) generation in macrophages. This satisfactory aqueous solubility and higher stability of H1/PPT, H2/PPT, and H3/PPT inclusion complexes should be possibly useful for its utilization as a herbal medicine and healthcare product.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yan, H.Y., Jin, H.D., Fu, Y., Yin, Z.X., Yin, C.R.: Production of rare ginsenosides Rg3 and Rh2 by endophytic bacteria from panax ginseng. J. Agric. Food Chem. A (2019). https://doi.org/10.1021/acs.jafc.9b03159

    Article  Google Scholar 

  2. Yu, S.S., Zhou, X.L., Li, F., Xu, C.C., Zheng, F., Li, J., Zhao, H.X., Dai, Y.L., Liu, S.Y., Feng, Y.: Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci. Rep. UK A (2017). https://doi.org/10.1038/s41598-017-00262-0

    Article  Google Scholar 

  3. Hu, Z.F., Gu, A.D., Liang, L., Li, Y., Gong, T., Chen, J.J., Chen, T.J., Yang, J.L., Zhu, P.: Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides. Green Chem. 21, 3286–3299 (2019)

    Article  CAS  Google Scholar 

  4. Eom, S.J., Hwang, J.E., Kim, H.S., Kim, K.T., Paik, H.D.: Anti-inflammatory and cytotoxic effects of ginseng extract bioconverted by Leuconostoc mesenteroides KCCM 12010P isolated from kimchi. Int. J. Food Sci. Tech. 53, 1331–1337 (2018)

    Article  CAS  Google Scholar 

  5. Zhang, M.X., Zhao, J.Q., Deng, J.J., Duan, Z.J., Zhu, C.H., Fan, D.D.: The protective effect of protopanaxatriol-type saponin on intestinal health in antibiotic-treated mice. Food Funct. 10, 4124–4133 (2019)

    Article  CAS  Google Scholar 

  6. Park, S.B., Park, G.H., Um, Y., Kim, H.N., Song, H.M., Kim, N., Kim, H.S., Jeong, J.B.: Wood-cultivated ginseng exerts anti-inflammatory effect in LPS-stimulated RAW264.7 cells. Int. J. Biol. Macromol. 116, 327–334 (2018)

    Article  CAS  Google Scholar 

  7. Lu, C., Lv, J., Dong, L., Jiang, N., Wang, Y., Wang, Q., Li, Y.H., Chen, S.G., Fan, B., Wang, F.Z., Liu, X.M.: Neuroprotective effects of 20(S)-protopanaxatriol (PPT) on scopolamine-induced cognitive deficits in mice. Phytother. Res. 32, 1056–1063 (2018)

    Article  CAS  Google Scholar 

  8. Kim, S.A., Shin, K.C., Oh, D.K.: Complete biotransformation of protopanaxadiol-type ginsenosides into 20-O-β-glucopyranosyl-20(S)-protopanaxadiol by permeabilized recombinant Escherichia coli cells coexpressing β-glucosidase and chaperone genes. J. Agric. Food Chem. A (2019). https://doi.org/10.1021/acs.jafc.9b02592

    Article  Google Scholar 

  9. Yang, Q.W., Wang, N., Zhang, J., Chen, G., Xu, H., Meng, Q.G., Du, Y., Yang, X., Fan, H.Y.: In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor. Phytomed. A (2019). https://doi.org/10.1016/j.phymed.2019.152899

    Article  Google Scholar 

  10. Shi, Z.Y., Zeng, J.Z., Wong, A.S.T.: Chemical structures and pharmacological profiles of ginseng saponins. Molecules A (2019). https://doi.org/10.3390/molecules24132443

    Article  Google Scholar 

  11. Wang, Z.H., Su, G.Y., Zhang, Z.G., Dong, H., Wang, Y.H., Zhao, H.Y., Zhao, Y.Q., Sun, Q.: 25-Hydroxyl-protopanaxatriol protects against H2O2-induced H9c2 cardiomyocytes injury via PI3K/Akt pathway and apoptotic protein down-regulation. Biomed. Pharmacother. 99, 33–42 (2018)

    Article  CAS  Google Scholar 

  12. Hong, C., Wang, D., Liang, J.M., Guo, Y.Z., Zhu, Y., Xia, J.X., Qin, J., Zhan, H.X., Wang, J.X.: Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics. 9, 4437–4449 (2019)

    Article  CAS  Google Scholar 

  13. Wang, Z.H., Kim, U.C., Jiao, Y.T., Li, C.W., Guo, Y.Y., Ma, X.Y., Jiang, M., Jiang, Z.H., Hou, Y.Y., Bai, J.: Quantitative proteomics combined with affinity MS revealed the molecular mechanism of ginsenoside antitumor effects. J. Proteome Res. A (2019). https://doi.org/10.1021/acs.jproteome.8b00972

    Article  Google Scholar 

  14. Huang, Q.F., Wang, Q.G., Li, D., Wei, X., Jia, Y.J., Zhang, Z., Ai, B., Cao, X.N., Guo, T., Liao, Y.D.: Co-administration of 20(S)-protopanaxatriol (g-PPT) and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer. J. Exp. Clin. Cancer Res. A (2019). https://doi.org/10.1186/s13046-019-1120-4

    Article  Google Scholar 

  15. Li, Z.Y., Chen, Y., Wu, H., Liu, Y.: Photoinduced assembly/disassembly of supramolecular nanoparticle based on polycationic cyclodextrin and azobenzene-containing surfactant. Chem. Select. 3, 3203–3207 (2018)

    CAS  Google Scholar 

  16. Guan, X.R., Chen, Y., Wu, X., Li, P.Y., Liu, Y.: Enzyme-responsive sulfatocyclodextrin/prodrug supramolecular assembly for controlled release of anti-cancer drug chlorambucil. Chem. Commun. 55, 953–956 (2019)

    Article  CAS  Google Scholar 

  17. Zhao, L.J., Yang, S.L., Jin, W., Yang, H.W., Li, F.Y., Chi, S.M., Zhu, H.Y., Lei, Z., Zhao, Y.: Host-guest inclusion systems of morin hydrate and quercetin with two bis (β-cyclodextrin)s: preparation, characterization and antioxidant activity. Aust. J. Chem. A (2019). https://doi.org/10.1071/CH18580

  18. Fu, H.G., Chen, Y., Yu, Q.L., Liu, Y.: A tumor-targeting Ru/polysaccharide/protein supramolecular assembly with high photodynamic therapy ability. Chem. Commun. A (2019). https://doi.org/10.1039/C8CC09964B

    Article  Google Scholar 

  19. Morais, C.A.S., Silva, B.L., Denadai, Â.M.L., Lopes, J.F., De Sousa, F.B.: Structural and thermodynamic investigation of pentoxifylline-cyclodextrin inclusion complex. Chem. Phys. Lett. 682, 43–48 (2017)

    Article  CAS  Google Scholar 

  20. Sinlikhitkul, N., Toochinda, P., Lawtrakul, L., Kuropakornpong, P., Itharat, A.: Encapsulation of plumbagin using cyclodextrins to enhance plumbagin stability: computational simulation, preparation, characterization, and application. J. Incl. Phenom. Macrocycl. Chem. 93, 229–243 (2018)

    Article  Google Scholar 

  21. Benyacoub, A., Skender, A., Boutemak, K., Hadj-Ziane-Zafour, A.: Inclusion complexes of Melia azedarach L. seed oil/β-cyclodextrin polymer: preparation and characterization. Chem. Pap. 73, 525–534 (2019)

    Article  CAS  Google Scholar 

  22. Yang, H.W., Pan, Z.J., Jin, W., Zhao, L.J., Xie, P., Chi, S.M., Zhao, Y.: Preparation, characterization and cytotoxic evaluation of inclusion complexes between celastrol with polyamine-modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. A (2019). https://doi.org/10.1007/s10847-019-00933-7

    Article  Google Scholar 

  23. Zhang, Y., Liang, L., Chen, Y., Chen, X.M., Liu, Y.: Construction and efficient dye absorption of supramolecular hydrogels by cyclodextrin pseudorotaxane and clay. Soft Matter 15, 73–77 (2019)

    Article  CAS  Google Scholar 

  24. Zhou, W.L., Chen, Y., Yu, Q.L., Li, P.Y., Chen, X.M., Liu, Y.: Photo-responsive cyclodextrin/anthracene/Eu3+supramolecular assembly for a tunable photochromic multicolor cell label and fluorescentink. Chem. Sci. 10, 3346–3352 (2019)

    Article  CAS  Google Scholar 

  25. Chen, X.M., Chen, Y., Hou, X.F., Wu, X., Gu, B.H., Liu, Y.: Sulfonato-β-cyclodextrin mediated supramolecular nanoparticle for controlled release of berberine. ACS Appl. Mater. 10, 24987–24992 (2018)

    Article  CAS  Google Scholar 

  26. Shen, Z., Qin, Q., Liao, X.L., Yang, B.: Host-guest inclusion system of glycyrrhetic acid with polyamine-β-cyclodextrin: preparation, characterization, and anticancer activity. J. Mol. Struct. 1149, 155–161 (2017)

    Article  CAS  Google Scholar 

  27. Yang, S.L., Zhao, L.J., Chi, S.M., Du, J.J., Ruan, Q., Xiao, P.L., Zhao, Y.: Inclusion complexes of flavonoids with propylenediamine modified β-cyclodextrin: preparation, characterization and antioxidant. J. Mol. Struct. 1183, 118–125 (2019)

    Article  CAS  Google Scholar 

  28. Popr, M., Hybelbauerová, S., Jindřich, J.: A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanent positive charges. Beilstein J. Org. Chem. 10, 1390–1396 (2014)

    Article  Google Scholar 

  29. Yang, L.J., Chang, Q., Zhou, S.Y., Yang, Y.H., Xia, F.T., Chen, W., Li, M.Y., Yang, X.D.: Host–guest interaction between brazilin and hydroxypropyl-β-cyclodextrin: preparation, inclusion mode, molecular modelling and characterization. Dyes Pigm. 150, 193–201 (2018)

    Article  CAS  Google Scholar 

  30. Higuchi, T., Connors, K.A.: Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  31. Wang, B.N., Hui, Y.Y., Liu, L.G., Zhao, A.Q., Chiou, Y.S., Zhang, F.X., Pan, M.H.: Optimized extraction of phenolics from jujube peel and their anti-inflammatory effects in LPS-stimulated murine macrophages. J. Agric. Food Chem. 67, 1666–1673 (2019)

    Article  CAS  Google Scholar 

  32. Khalilov, Q., Li, L., Liu, Y., Liu, W., Numonov, S., Akber Aisa, H., Yuan, T.: Brassinosteroid analogues from the fruiting bodies of Laetiporus sulphureus and their anti-inflammatory activity. Steroids A (2019). https://doi.org/10.1016/j.steroids.2019.108468

    Article  Google Scholar 

  33. Cui, H., Siva, S., Lin, L.: Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: preparation, characterization and antibacterial activity. Ultrason. Sonochem. 56, 84–93 (2019)

    Article  CAS  Google Scholar 

  34. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  35. Zou, A.H., Zhao, X.T., Handge, U.A., Garamus, V.M., Willumeit-Römer, R., Yin, P.H.: Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. Mater. Sci. Eng. C 78, 609–618 (2017)

    Article  CAS  Google Scholar 

  36. Du, J.J., Zhao, L.J., Yang, S.L., Huang, Y.R., Chi, S.M., Ruan, Q., Zheng, P., Hu, R., Zhao, Y.: Preparation, characterization, solubilization and antioxidant activity of polyamine modifed β-cyclodextrins with baicalein inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 93, 203–213 (2019)

    Article  CAS  Google Scholar 

  37. Couto, A.R.S., Aguiar, S., Ryzhakov, A., Larsen, K.L., Loftsson, T.: Interaction of native cyclodextrins and their hydroxypropylated derivatives with parabens in aqueous solutions. Part 1: evaluation of inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. A (2019). https://doi.org/10.1007/s10847-018-00876-5

    Article  Google Scholar 

  38. Cerutti, J.P., Quevedo, M.A., Buhlman, N., Longhi, M.R., Zoppi, A.: Synthesis and characterization of supramolecular systems containing nifedipine, β-cyclodextrin and aspartic acid. Carbohydr. Polym. 205, 480–487 (2018)

    Article  Google Scholar 

  39. Jin, W., Li, F.Y., Huang, Y.R., Yang, H.W., Chi, S.M., Zhu, H.Y., Lei, Z., Zhao, Y.: Preparation and properties study of inclusion complex of triptonide with 2, 6-Dimethyl-β-cyclodextrin. Chin. J. Anal. Chem. 47, 1235–1242 (2019)

    Article  CAS  Google Scholar 

  40. Celebioglu, A., Yildiz, Z.I., Uyar, T.: Thymol/cyclodextrin inclusion complex nanofibrous webs: enhanced water solubility, high thermal stability and antioxidant property of thymol. Food. Res Int. 106, 280–290 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations (Nos. 21961046, 21362046) and YangFan Innovative & Entepreneurial Research Team Project (No. 201312S09), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Li, J., Jin, W. et al. Host–guest interaction between 20(S)-protopanaxatriol and three polyamine-modified β-cyclodextrins: preparation, characterization, inclusion modes, and solubilization. J Incl Phenom Macrocycl Chem 97, 29–42 (2020). https://doi.org/10.1007/s10847-020-00992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00992-1

Keywords

Navigation