Efficient synthesis of new 17-, 18-, 19- and 20-membered N2O2-donor macrocycles by NaBH4 reduction and metal picrate extraction studies


Four new N2O2-donor macrocycles mDo4R, mDo5R, mDo6R, mDo7R (mDo4R = 1,5-diaza-2,4:7,8:15,16- tribenzo-9,14-dioxa-cycloheptadecane, mDo5R = 1,5-diaza-2,4:7,8:16,17-tribenzo-9,15-dioxa-cyclooctadecane, mDo6R = 1,5-diaza-2,4:7,8:17,18-tribenzo-9,16-dioxa-cyclononadecane; mDo7R = 1,5-diaza-2,4:7,8:18,19-tribenzo-9,17-dioxa-cycloeicosane) were prepared by NaBH4 reduction of appropriate macrocyclic Schiff bases in high yields. The compounds were characterized by means of FT-IR and NMR spectroscopy and elemental analysis. The crystal and molecular structure was determined for mDo5R and mDo7R. The molecular structure of mDo5R indicate large deviation from planarity, relatively large inner macrocyclic hole size (1.542–3.048 Å) and exodentante orientation of one nitrogen atom (N2) due to presence of intramolecular N–H⋯O hydrogen bond. In mDo7R both nitrogen atoms are exodentante and involved in intramolecular N–H⋯O hydrogen bond. The mDo7R molecules are quite planar with small values of puckering amplitude (1.329(2) Å, 1.355(2) Å and 1.433(2) Å). In the crystal structure of both compounds, molecules are primarily linked by weak C–H⋯π, C–H⋯N and C–H⋯O interactions. The metal cation extractability was determined for all compounds by UV–Vis spectrophotometry and all of compounds show affinity towards extraction of iron (III) and mercury (II) cations.

Graphic Abstract

Synthesis and characterisation of secondary amine macrocycles derived from macrocyclic Schiff base analouges and metal picrate extraction studies

This is a preview of subscription content, log in to check access.

Scheme 1.
Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Morillo, J., Usero, J., Gracia, I.: Heavy metal fractionation in sediments from the Tinto river (Spain). Int. J. Environ. Anal. Chem. 82, 245–257 (2002)

    CAS  Google Scholar 

  2. 2.

    Lindoy, L.F., Meehan, G.V., Vasilescu, I.M., Kim, H.J., Lee, J.E., Lee, S.S.: Transition and post-transition metal ion chemistry of dibenzo-substituted, mixed-donor macrocycles incorporating five donor atoms. Coord. Chem. Rev. 254, 1713–1725 (2010)

    CAS  Google Scholar 

  3. 3.

    Adams, H., Bastida, R., Fenton, D.E., Macias, A., Spey, S.E., Valencia, L.: Zinc and cadmium complexes of an 18-membered N4O2 oxaaza-Schiff base macrocycle and the corresponding reduced form. J. Chem. Soc. Dalt. Trans. 23, 4131–4137 (1999)

    Google Scholar 

  4. 4.

    Freiría, A., Bastida, R., Valencia, L., Macías, A., Lodeiro, C., Adams, H.: Metal complexes with two tri-aza, tri-oxa pendant-armed macrocyclic ligands: synthesis, characterization, crystal structures and fluorescence studies. Inorganica Chim. Acta. 359, 2383–2394 (2006)

    Google Scholar 

  5. 5.

    Kuksa, V., Marshall, C., Wardell, S., Kong Thoo Lin, P.: The synthesis of novel oxa-azamacrocycles. Synthesis (Stuttg.) 6, 1034–1038 (1999)

    Google Scholar 

  6. 6.

    Vicente, M., Bastida, R., Lodeiro, C., Macías, A., Parola, A.J., Valencia, L., Spey, S.E.: Metal complexes with a new N4O3 amine pendant-armed macrocyclic ligand: synthesis, characterization, crystal structures, and fluorescence studies. Inorg. Chem. 42, 6768–6779 (2003)

    CAS  PubMed  Google Scholar 

  7. 7.

    Ceborska, M., Tarnowska, A., Ziach, K., Jurczak, J.: Dynamic combinatorial libraries of macrocycles derived from phthalic aldehydes and α, ω-diamines. Tetrahedron 66, 9532–9537 (2010)

    CAS  Google Scholar 

  8. 8.

    Gok, H.Z., Demir, H.A.: Study of interfacial adsorption isotherm at divided interface for novel macrocycles in solvent extraction. J. Incl. Phenom. Macrocycl. Chem. 81, 95–104 (2015)

    CAS  Google Scholar 

  9. 9.

    Zhang, J.Q., Jia, C.Y.: Synthetic strategies and applications of macrocycle molecules based on Schiff-base reaction. Chin. J. Organ. Chem. 30, 1142–1155 (2010)

    CAS  Google Scholar 

  10. 10.

    Andres, A., Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Garcia-Espana, E., Paoletti, P., Valtancoli, B.: Oxa-aza macrocyclic molecules as receptors for metal cations. Inorg. Chem. 33, 617–620 (1994)

    CAS  Google Scholar 

  11. 11.

    Park, K.M., Yoon, I., Lee, Y.H., Lee, S.S.: Synthesis and crystal structures of S2O2-donor macrocycles and their silver(I) metallopolymers. Inorg. Chim. Acta 343, 33–40 (2003)

    CAS  Google Scholar 

  12. 12.

    Reyes-Marquez, V., Sanchez, M., Hopfl, H., Lara, K.O.: Synthesis and structural characterization of 18-, 19-, 20- and 22-membered Schiff base macrocycles. J. Incl. Phenom. Macrocycl. Chem. 65, 305–315 (2009)

    CAS  Google Scholar 

  13. 13.

    Adam, K.R., Baldwin, D.S., Lindoy, L.F., Meehan, G.V., Vasilescu, I.M., Wei, G.: Metal-ion recognition. Modeling the stability constants of some mixed-donor macrocyclic metal ion complexes - a simple model. Inorg. Chim. Acta 352, 46–50 (2003)

    CAS  Google Scholar 

  14. 14.

    Hancock, R.D., Martell, A.E.: Ligand design for selective complexation of metal ions in aqueous solution. Chem. Rev. 89, 1875–1914 (1989)

    CAS  Google Scholar 

  15. 15.

    Balić, T., Marković, B., Jaźwiński, J., Matković-Čalogović, D.: Synthesis and structural characterization of new N2O2-donor Schiff base macrocycles and their silver (I) coordination polymers. Inorg. Chim. Acta 435, 283–291 (2015)

    Google Scholar 

  16. 16.

    Balić, T., Matasović, B., Marković, B., Šter, A., Štivojević, M., Matković-Čalogović, D.: Synthesis, structural characterization and extraction studies of 17-, 18-, 19- and 20-membered N2O2-donor macrocyclic Schiff bases. J. Incl. Phenom. Macrocycl. Chem. 85, 217–226 (2016)

    Google Scholar 

  17. 17.

    Tei, L., Blake, A.J., Bencini, A., Valtancoli, B., Wilson, C., Schröder, M.: Synthesis, solution studies and structural characterisation of complexes of a mixed oxa-aza macrocycle bearing pendant amino arms. J. Chem. Soc. Dalt. Trans. 22, 4122–4129 (2000)

    Google Scholar 

  18. 18.

    Lodeiro, C., Bastida, R., Bértolo, E., Rodríguez, A.: A new family of NxOx pyridine-containing macrocycles: synthesis and characterization of their Y(III), Ln(III), Zn(II), and Cd(II) coordination compounds. Can. J. Chem. 82, 437–447 (2004)

    CAS  Google Scholar 

  19. 19.

    Binauld, S., Hawker, C.J., Fleury, E., Drockenmuller, E.: A Modular approach to functionalized and expanded crown ether based macrocycles using click chemistry. Angew. Chem. Int. Ed. 48, 6654–6658 (2009)

    CAS  Google Scholar 

  20. 20.

    Sunkur, M., Baris, D., Hosgoren, H.: Novel C2-symmetric macrocycles bearing diamide-diester groups: synthesis and enantiomeric recognition for primary alkyl ammonium salts. J. Org. Chem. 73, 2570–2575 (2008)

    CAS  PubMed  Google Scholar 

  21. 21.

    Lodeiro, C., Bastida, R., Bertolo, E., Macias, A., Rodriguez, A.: Coordination chemistry of copper(II) with oxaaza macrocyclic ligands. Crystal structure of a dinuclear tetramer copper(II) complex. Polyhedron 22, 1701–1710 (2003)

    CAS  Google Scholar 

  22. 22.

    Lodeiro, C., Bastida, R., Bertolo, E., Macias, A., Rodriguez, A.: Metal complexes with four macrocyclic ligands derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,7-bis(2 '-formylphenyl)1,4,7-trioxaheptane. Inorg. Chim. Acta 343, 133–140 (2003)

    CAS  Google Scholar 

  23. 23.

    MacLachlan, M.J.: Conjugated shape-persistent macrocycles via Schiff-base condensation: new motifs for supramolecular chemistry. Pure Appl. Chem. 78, 873–888 (2006)

    CAS  Google Scholar 

  24. 24.

    Guieu, S., Crane, A.K., MacLachlan, M.J.: Campestarenes: novel shape-persistent Schiff basemacrocycles with 5-fold symmetry. Chem. Commun. 47, 1169–1171 (2011)

    CAS  Google Scholar 

  25. 25.

    Radecka-Paryzek, W., Patroniak, V., Lisowski, J.: Metal complexes of polyaza and polyoxa Schiff base macrocycles. Coord. Chem. Rev. 249, 2156–2175 (2005)

    CAS  Google Scholar 

  26. 26.

    Hui, J.K.H., MacLachlan, M.J.: [6 + 6] Schiff-base macrocycles with 12 imines: giant analogues of cyclohexane. Chem. Commun. 23, 2480–2482 (2006)

    Google Scholar 

  27. 27.

    Kuhnert, N., Göbel, D., Thiele, C., Renault, B., Tang, B.: Synthesis of enantiomerically pure functionalised trianglamine macrocycles by N-acylation and N-alkylation reactions. Tetrahedron Lett. 47, 6915–6918 (2006)

    CAS  Google Scholar 

  28. 28.

    Ragunathan, K.G., Bharadwaj, P.K.: Template synthesis of a cryptand with hetero-ditopic receptor sites. Tetrahedron Lett. 33, 7581 (1992)

    CAS  Google Scholar 

  29. 29.

    Chand, D.K., Ragunathan, K., Bharadwaj, P.K.: Tetrahedral recognition of a water molecule by heteroditopic cryptands: X-ray structural studies. J. Org. Chem. 61, 1169–1171 (1996)

    CAS  Google Scholar 

  30. 30.

    Wang, M.-X.: Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition. Acc. Chem. Res. 45, 182–195 (2012)

    CAS  PubMed  Google Scholar 

  31. 31.

    Oxford Diffraction, Oxford Difraction Ltd., Xcalibur CCD system, CRYSALIS Software system, Version, 2010.

  32. 32.

    Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Spagna, R.: SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr. 38, 381–388 (2005)

    CAS  Google Scholar 

  33. 33.

    Farrugia, L.J.: WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012)

    CAS  Google Scholar 

  34. 34.

    Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    CAS  PubMed  Google Scholar 

  35. 35.

    Spek, A.L.: PLATON, An integrated tool for the analysis of the results of a single crystal structure determination. Acta Crystallogr. A 46, 34 (1990)

    Google Scholar 

  36. 36.

    Spek, A.L.: PLATON: A Multipurpose Crystallographic Tool. Ultrecht University, Ultrecht (1998)

    Google Scholar 

  37. 37.

    Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., van de Streek, J.: Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 39, 453–457 (2006)

    CAS  Google Scholar 

  38. 38.

    Pedersen, C.J.: Ionic complexes of macrocyclic polyethers. J. Fed. Proc. Fed. Am. Soc. Exp. Biol. 27, 1305–1309 (1968)

    CAS  Google Scholar 

  39. 39.

    Bértolo, E., Bastida, R., de Blas, A., Fenton, D.E., Macías, A., Rodríguez, A., Rodríguez-Blas, T., Villar, A.: Four novel N3O4 donor macrocycles and their lanthanide(III) complexes. Z. Naturforsch. B 53, 1445–1454 (1998)

    Google Scholar 

  40. 40.

    Cain, M.F., Forrest Junior, W.P., Peryshkov, D.V., Schrock, R.R., Muller, P.: Synthesis of a TREN in which the aryl substituents are part of a 45 atom macrocycle. J. Am. Chem. Soc. 135, 15338–15341 (2013)

    CAS  PubMed  Google Scholar 

  41. 41.

    Esteban-Gomez, D., Platas-Iglesias, C., de Blas, A., Fabbrizzi, L., Rodriguez-Blas, T.: Protonated macrobicyclic hosts containing pyridine head units for anion recognition. Chem. Eur. J. 14, 5829–5838 (2008)

    CAS  PubMed  Google Scholar 

  42. 42.

    Adams, H., Bastida, R., Fenton, D.E., Mann, B.E., Valencia, L.: The synthesis of an N,N′-Diformylated 36-Membered N8O4 oxaazamacrocycle. Eur. J. Org. Chem. 8, 1843–1846 (1999)

    Google Scholar 

  43. 43.

    Esteban-Gomez, D., Enriquez-Perez, T., Ferreiros-Martinez, R., Mato-Inglesias, M., Platas-Iglesias, C., de Blas, A., Rodriguez-Blas, T.: Lead(II) complexes of lateral macrobicyclic receptors that incorporate a crown moiety and a pyridine head unit. Eur. J. Inorg. Chem. 31, 5027–5034 (2010)

    Google Scholar 

  44. 44.

    Kondo, S., Hayashi, T., Sakuno, Y., Takezawa, Y., Yokoyama, T., Unno, M., Yano, Y.: Synthesis of cyclic bis- and trismelamine derivatives and their complexation properties with barbiturates. Org. Biomol. Chem. 5, 907–916 (2007)

    CAS  PubMed  Google Scholar 

  45. 45.

    Hahn, F.E., Zabula, A.V., Pape, T., Hupka, F.: Preparation and molecular structure of a cyclic bisgermylene with two lutidine bridging groups. Z. Anorg. Allg. Chem. 635, 1341–1344 (2009)

    CAS  Google Scholar 

  46. 46.

    Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91, 1721–2085 (1991)

    CAS  Google Scholar 

  47. 47.

    Kupai, J., Huszthy, P., Katz, M., Tóth, T.: Synthesis of new enantiopure dimethyl-substitutedpyridino-18-crown-6 ethers containing a hydroxymethyl, a formyl, or a carboxyl group at position 4 of the pyridine ring for enantiomeric recognition studies. Arkivoc 4, 130–151 (2016)

    Google Scholar 

  48. 48.

    Zolotov, Y.A., Kuzmin, N.M., Petrukhin, O.M., Spivakov, B.A.: Liquid-liquid extraction in inorganic analysis: current status and prospects. Anal. Chim. Acta 180, 137–161 (1986)

    CAS  Google Scholar 

  49. 49.

    Zolotov, Y.A.: Macrocyclic Compounds in Analytical Chemistry. Wiley, Weinheim (1997)

    Google Scholar 

  50. 50.

    Dmitrienko, S.G., Pasekova, N.A., Slyusareva, E.D., Fonnanovskii, A.A., Mikhura, V., Zolotov, Y.A.: The study of extraction properties of pyridine containing macrocycles. Vestn. Mosk. Univ Ser. 31, 378 (1990)

    CAS  Google Scholar 

Download references


This work was carried out with financial support from Josip Juraj Strossmayer University of Osijek (Project: UNIOS-ZUP 2018-112). The authors acknowledge Dr. Dyanne Cruickshank of Rigaku Europe SE for single crystal X-ray analysis of mDo5R.

Author information



Corresponding author

Correspondence to Tomislav Balić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Database name and registration number: CCDC 1941743 for mDo5R and CCDC 1964047 for mDo7R.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1085 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paurević, M., Dandić, A., Šrajer Gajdošik, M. et al. Efficient synthesis of new 17-, 18-, 19- and 20-membered N2O2-donor macrocycles by NaBH4 reduction and metal picrate extraction studies. J Incl Phenom Macrocycl Chem 97, 87–98 (2020). https://doi.org/10.1007/s10847-020-00987-y

Download citation


  • Macrocycle
  • N2O2-donor
  • NaBH4
  • X ray