Skip to main content
Log in

Prediction of the most preferable rotamer of meta-aminophenol in β-cyclodextrin cavity in aqueous medium by using spectroscopic and DFT computational studies

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Meta-aminophenol (m-AP) was used as a guest molecule to be incorporated into the hydrophobic nano-cavity of the host molecule β-cyclodextrin (β-CD) to form host–guest inclusion complex in aqueous medium. For this, we employed spectrometric titration method, i.e., β-CD was added gradually in an aqueous solution of m-AP maintaining a fixed concentration of m-AP. We investigated the changes in the photophysical properties of m-AP through inclusion complex formation in β-CD in aqueous medium by using steady state and time-resolved spectroscopic techniques as well as density functional theory (DFT) computations. Benesi–Hildebrand method was used to find the stoichiometry and association constant at two concentration ranges of β-CD. The average fluorescence lifetime of m-AP was found to increase from 0.17 ns in absence of β-CD to 3.69 ns in presence of β-CD (highest concentration used). DFT computations carried out in water medium clearly indicate that the inclusion complex is more stable for the cis-rotameric conformation of m-AP rather than trans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou, X., Liang, J.F.: A fluorescence spectroscopy approach for fast determination of β-cyclodextrin-guest binding constants. J. Photochem. Photobiol. A 349, 124–128 (2017)

    Article  CAS  Google Scholar 

  2. Majhi, K., Khatun, R., Jana, S., Hajra, A., Shukla, A., Maiti, P., Dey, A., Ray, P.P., Sinha, S.: Synthesis and characterization of host–guest inclusion complex of m-cresol with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 90, 61–73 (2018)

    Article  CAS  Google Scholar 

  3. Prashanthi, S., Kumar, P.H., Siva, D., Bangal, P.R.: Investigation of supramolecular stoichiometry and dynamic for inclusion complex of water soluble porphyrin with cucurbit [7] uril by fluorescence correlation spectroscopy. J. Photochem. Photobiol. A 284, 27–35 (2014)

    Article  Google Scholar 

  4. Reis, S., Liberto, N.A., Fernandes, S.A., de Fátima, A., Almeida, W.B.D., Guimarães, L., Nascimento Jr., C.S.: Theoretical investigation on the molecular inclusion process of urease inhibitors into p-sulfonic acid calix[4,6]arenes. Chem. Phys. Lett. 692, 117–123 (2018)

    Article  CAS  Google Scholar 

  5. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)

    Article  CAS  Google Scholar 

  6. Shaikh, M., Swamy, Y.M., Pal, H.: Supramolecular host–guest interaction of acridine dye with cyclodextrin macrocycles: photophysical, pKa shift and quenching study. J. Photochem. Photobiol. A 258, 41–50 (2013)

    Article  CAS  Google Scholar 

  7. Chen, M., Diao, G., Zhang, E.: Study of inclusion complex of β-cyclodextrin and nitrobenzene. Chemosphere 63, 522–529 (2006)

    Article  CAS  Google Scholar 

  8. Kaanumalle, L.S., Gibb, C.L.D., Gibb, B.C., Ramamurthy, V.: A hydrophobic nanocapsule controls the photophysics of aromatic molecules by suppressing their favored solution pathways. J. Am. Chem. Soc. 127, 3674–3675 (2005)

    Article  CAS  Google Scholar 

  9. Mukhopadhyay, M., Banerjee, D., Mukherjee, S.: Proton-transfer reaction of 4-methyl-2,6-diformyl phenol in cyclodextrin nanocage. J. Phys. Chem. A 110, 12743–12751 (2006)

    Article  CAS  Google Scholar 

  10. Zhang, J., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65, 1215–1233 (2013)

    Article  CAS  Google Scholar 

  11. Trapani, A., Laurentis, N.D., Armenise, D., Carrieri, A., Defrenza, I., Rosato, A., Mandracchia, D., Tripodo, G., Salomone, A., Capriati, V., Franchini, C., Corbo, F.: Enhanced solubility and antibacterial activity of lipophilic fluoro-substituted N-benzoyl-2-aminobenzothiazoles by complexation with β-cyclodextrins. Int. J. Pharm. 497, 18–22 (2016)

    Article  CAS  Google Scholar 

  12. Kfoury, M., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 131, 264–272 (2015)

    Article  CAS  Google Scholar 

  13. Assaf, K.I., Suckova, O., Danaf, N.A., Glasenapp, V.V., Gabel, D., Nau, W.M.: Dodecaborate functionalized anchor dyes for cyclodextrin-based indicator displacement applications. Org. Lett. 18, 932–935 (2016)

    Article  CAS  Google Scholar 

  14. Aytac, Z., Kusku, S.I., Durgun, E., Uyar, T.: Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility. Food Chem 197, 864–871 (2016)

    Article  CAS  Google Scholar 

  15. Sayed, M., Pal, H.: Supramolecularly assisted modulations in chromophoric properties and their possible applications: an overview. J. Mater. Chem. C 4, 2685–2706 (2016)

    Article  CAS  Google Scholar 

  16. ten Brummelhuis, N., Heilmann, M.T.: Polymerization of ternary inclusion complexes of interacting monomer pairs with γ-cyclodextrin. Macromolecules 18, 6879–6887 (2016)

    Article  Google Scholar 

  17. Shinozaki, M., Sakai, M., Yamaguchi, S., Fujioka, T., Fujii, M.: S1–S0 Electronic spectrum of jet-cooled m-aminophenol. Phys. Chem. Chem. Phys. 5, 5044–5050 (2003)

    Article  CAS  Google Scholar 

  18. Liebert, M.A.: Final report on the safety assessment of p-aminophenol, m-aminophenol, and o-aminophenol. J. Am. Coll. Toxicol. 7, 279–333 (1988)

    Article  Google Scholar 

  19. Wang, J.L., Miao, F.M., Zhou, W.H., Ma, S.K.: Synthesis and structure of inclusion complex of cyclomaltoheptaose (β-cyclodextrin) with m-aminophenol. Chin. J. Chem. 20, 358–361 (2002)

    Article  CAS  Google Scholar 

  20. Robinson, T.W., Kjaergaard, H.G., Ishiuchi, S., Shinozaki, M., Fujii, M.: Vibrational overtone spectroscopy of jet-cooled aminophenols as a probe for rotational isomers. J. Phys. Chem. A 108, 4420–4427 (2004)

    Article  CAS  Google Scholar 

  21. Reese, J.A., Nguyen, T.V., Korter, T.M., Pratt, D.W.: Charge redistribution on electronic excitation. Dipole moments of cis- and trans-3-aminophenol in their S0 and S1 electronic states. J. Am. Chem. Soc. 126, 11387–11392 (2004)

    Article  CAS  Google Scholar 

  22. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven T., Montgomery, J.A., Jr. Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. Revision C.01, Gaussian, Inc., Wallingford CT, 2009

  23. Gledening, E.D., Reed, A.E., Carpenter, J.A., Weinhold, F.: NBO Version 3.1

  24. Warner, I.M., Mcgown, L.B.: Advances in Multidimensional Luminescence, vol. 2. JAI Press, Greenwisch (1993)

    Google Scholar 

  25. Agbaria, R.A., Butterfield, M.T., Warner, I.M.: Use of cyclodextrins and fluorescence spectroscopy to probe the dual fluorescence of 9-anthroic acid. J. Phys. Chem. 100, 17133–17137 (1996)

    Article  CAS  Google Scholar 

  26. Oana, M., Tintaru, A., Gavrilliu, D., Maior, O., Hillebrand, M.: Spectral study and molecular modeling of the inclusion complexes of β-cyclodextrin with some phenoxathiin derivatives. J. Phys. Chem. B 106, 257–263 (2002)

    Article  CAS  Google Scholar 

  27. El-Kemary, M.A., El-Gezawy, H.S.: Spectral study and global analysis of fluorescence decays of the inclusion complexes of 2-amino-4,6-dimethyl pyrimidine with α- and β-cyclodextrins. J. Photochem. Photobiol. A 155, 151–156 (2003)

    Article  CAS  Google Scholar 

  28. Chen, Y., Xu, T., Shen, X., Gao, H.: Temperature dependence of the inclusion–dissociation behavior of the inclusion complexes between cationic substituted 3H-indoles and β-cyclodextrin. Design of a novel type of semi-rotaxane. J. Photochem. Photobiol. A 173, 42–50 (2005)

    Article  CAS  Google Scholar 

  29. Meyer, M., Mialocq, J.C., Rougée, M.: Fluorescence lifetime measurements of the two isomers of the laser dye DCM. Chem. Phys. Lett. 150, 484–490 (1988)

    Article  CAS  Google Scholar 

  30. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  31. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Letts. 393, 51–57 (2004)

    Article  CAS  Google Scholar 

  32. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  33. Boys, S.F., Barnardi, F.: The calculation of small molecular interactions by the difference of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  34. Domingo, L.R., Ríos-Gutiérrez, M., Pérez, P.: Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21, 1–22 (2016)

    Google Scholar 

  35. Chhattaraj, P.K., Sarkar, U., Roy, D.R.: Electrophilicity index. Chem. Rev. 106, 2065–2091 (2006)

    Article  Google Scholar 

  36. Nora, M., Fatiha, M., Leila, N., Sakina, H., Eddine, K.D.: Density functional study of inclusion complex of Albendazole/cucurbit [7]: structure, electronic properties, NBO, GIAO and TD-DFT analysis. J. Mol. Liq. 211, 40–47 (2015)

    Article  CAS  Google Scholar 

  37. Carlson, B.C., Keller, J.M.: Orthogonalization procedures and the localization of Wannier functions. Phys. Rev. 105, 102–103 (1957)

    Article  CAS  Google Scholar 

  38. Carpenter, J.E., Weinhold, F.: Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J. Mol. Struct. (Theochem.) 169, 41–62 (1988)

    Article  Google Scholar 

  39. Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735–739 (1985)

    Article  CAS  Google Scholar 

  40. Davidson, E.R.: Reduced Density Matrices in Quantum Chemistry, 1st edn. Academic Press, New York (1976)

    Google Scholar 

Download references

Acknowledgements

SS thanks Prof. Samita Basu (Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata—700 064, India) for her valuable scientific suggestions and Mr. Ajay Das (Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata—700 064, India) for fluorescence lifetime measurements. Also, SS sincerely acknowledges Prof. Pranab Sarkar, Dr. Md. Motin Seikh (Department of Chemistry, Siksha Bhavana, Visva-Bharati, Santiniketan—731 235, India) and Dr. Nilanjan Bondyopadhaya (ISERC, Siksha Bhavana, Visva-Bharati, Santiniketan—731 235, India) for helping in DFT calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, K., Bandyopadhyay, P., Khatun, R. et al. Prediction of the most preferable rotamer of meta-aminophenol in β-cyclodextrin cavity in aqueous medium by using spectroscopic and DFT computational studies. J Incl Phenom Macrocycl Chem 97, 77–86 (2020). https://doi.org/10.1007/s10847-020-00985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00985-0

Keywords

Navigation