Skip to main content
Log in

Performance assessment of modified clinoptilolite and magnetic nanotubes on sulfate removal and potential application in natural river samples

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

This study presents the adsorption of sulfate by clinoptilolite and magnetic nanotubes (MNT) from the Gamasiab river (Kermanshah, Iran) samples. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results showed that selective methods were implemented properly for nanoparticle preparation. During the process operating, time was considered as the most significant factor in sulfate removal. Moreover, adsorbent to pollutant ratios (D/C), and pH was selected as control variables. The design of the experiment was used to find the optimal conditions for the use of adsorbents. The optimum adsorption points were obtained for the MNT at pH 8.97 and D/C = 6.12 and the clinoptilolite at pH 10.68 and D/C = 22.07. The effect of pH on the adsorbents indicated that the adsorbent performance in the alkaline condition has the highest efficiency. Hence, for MNTs, increasing pH value increased the adsorbance amount. To investigate the effect of D/C, the rate of adsorption showed an ascending trend. In addition, the equilibrium data were defined by Langmuir and Freundlich isotherm models, respectively. Freundlich isotherm well described the process of adsorbing sulfate by clinoptilolite with a correlation coefficient of 0.918. While the Langmuir isotherm was consistent with the adsorption process of sulfate by MNT with a correlation coefficient of 0.9728. The efficiency of sulfate adsorption for clinoptilolite and MNT in the natural river samples was calculated 91.5% and 97.8%, respectively. The results showed the superiority of MNT adsorption capability in river water conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Vafaeifard, G. Lee, S. Akib, S. Ibrahim, Y. Yoon, M.J.D. Jang, W. Treatment: Facile and economic one-pot synthesis of rigid functional-polyurethane for the effective treatment of heavy metal-contaminated urban storm water run-off. Desalin. Water Treat. 57(54), 26114–26129 (2016)

    Article  CAS  Google Scholar 

  2. Salimi, A.H., Karami, H., Farzin, S., Hassanvand, M., Azad, A., Kisi, O.: Design of water supply system from rivers using artificial intelligence to model water hammer. ISH J Hydraul Eng, https://doi.org/10.1080/09715010.2018.1465366 (2018)

    Google Scholar 

  3. M. Vafaeifard, S. Ibrahim, K.T. Wong, P. Pasbakhsh, S. Pichiah, J. Choi, Y. Yoon, Jang: Novel self-assembled 3D flower-like magnesium hydroxide coated granular polyurethane: implication of its potential application for the removal of heavy metals. J. Clean. Prod. 216, 495–503 (2019)

    Article  CAS  Google Scholar 

  4. O. Kondo, H. Miyata, K. Tôei: Determination of sulfate in river water by flow injection analysis. Anal. Chim. Acta 134, 353–358 (1982)

    Article  CAS  Google Scholar 

  5. W.D. Heizer, R.S. Sandler, E. Seal, S.C. Murray, M.G. Busby, B.G. Schliebe, S.N. Pusek: Intestinal effects of sulfate in drinking water on normal human subjects. Dig. Dis Sci. 42(5), 1055–1061 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. C.T. Benatti, R.G. Tavares, Lenzi: Sulfate removal from waste chemicals by precipitation. J. Environ. Manag. 90(1), 504–511 (2009)

    Article  CAS  Google Scholar 

  7. X. Qu, P.J. Alvarez, Q. Li: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, Z. Saad, V. Kazpard: Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: effectiveness and complexation rate. Microporous Mesoporous Mater. 212, 125–36 (2015)

    Article  CAS  Google Scholar 

  9. J. Zhao, N. Dehbari, W. Han, L. Huang, Tang: Electro spun multi-scale hybrid nanofiber/net with enhanced water swelling ability in rubber composites. Mater. Des. 86, 14–21 (2015)

    Article  CAS  Google Scholar 

  10. W. Tao, G. Chen, G. Zeng, M. Yan, A. Chen, Z. Guo, Z. Huang, K. He, L. Hu, Wang: Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments. Chemosphere 162, 117–124 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. C.P. Devatha, A.K. Thalla, S.Y. Katte: Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic wastewater. J. Clean. Prod. 139, 1425–1435 (2016)

    Article  CAS  Google Scholar 

  12. V. Alimohammadi, M. Sedighi, E. Jabbari: Response surface modeling and optimization of nitrate removal from aqueous solutions using magnetic multi-walled carbon nanotubes. J. Environ. Chem. Eng. 4(4), 4525–4535 (2016)

    Article  CAS  Google Scholar 

  13. Q. Li, Z. Zhan, S. Jin, B. Tan: Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment. Chem. Eng. J. 326, 109–16 (2017)

    Article  CAS  Google Scholar 

  14. Z. Ma, C. Shan, J. Liang, M. Tong: Efficient adsorption of Selenium (IV) from water by hematite modified magnetic nanoparticles. Chemosphere 193, 134–41 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. R.G. Ford, A.C. Scheinost, D.L. Sparks: Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces. Adv. Agron. 74, 41–62 (2001)

    Article  CAS  Google Scholar 

  16. M. Ishiguro, T. Nakajima: Hydraulic conductivity of an allophanic Andisol leached with dilute acid solutions. Soil Sci. Soc. Am. J. 64(3), 813–818 (2000)

    Article  CAS  Google Scholar 

  17. J. Yasinta, E. Victor, M. Daniel: A Comparative study on removal of hazardous anions from water by adsorption: a review. J. Chem. Eng. 2018, 21 (2018). https://doi.org/10.1155/2018/3975948

    Article  CAS  Google Scholar 

  18. M. Ishiguro, K. Nakaishi, Nakajima: Saturated hydraulic conductivity of a volcanic ash soil affected by repulsive potential energy in a multivalent anionic system. Colloid Surf. A 230(1–3), 81–88 (2003)

    Article  CAS  Google Scholar 

  19. H. Wijnja, C.P. Schulthess: Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr) oxide surfaces. J. Colloid Interface Sci. 229(1), 286–297 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. C. Namasivayam, D. Sangeetha: Application of coconut coir pith for the removal of sulfate and other anions from water. Desalination 219(1–3), 1–13 (2008)

    Article  CAS  Google Scholar 

  21. M.S. Salman: Removal of sulfate from wastewater by activated carbon. Al-Khwarizmi Eng. J. 5(3), 72–79 (2018)

    Google Scholar 

  22. C.H. Wu, C.Y. Kuo, C.F. Lin, Lo: Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm. Chemosphere 47(3), 283–292 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Sağ, Y. Aktay: Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem. 36(1–2), 157–173 (2000)

    Article  Google Scholar 

  24. I.J. Bautista-Toledo, M.A. Rivera-Utrilla, Ferro-Garcia, Moreno-Castilla: Influence of the oxygen surface complexes of activated carbons on the adsorption of chromium ions from aqueous solutions: effect of sodium chloride and humic acid. Carbon 32(1), 93–100 (1994)

    Article  CAS  Google Scholar 

  25. American Public Health Association, American Water Works Association: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington (1989)

    Google Scholar 

  26. G.E. Box, N.R. Draper: Response Surfaces, Mixtures, and Ridge Analyses. Wiley, Hoboken (2007)

    Book  Google Scholar 

  27. D.C. Montgomery: Design and Analysis of Experiments. Wiley, Hoboken (2017)

    Google Scholar 

  28. O.J. Redlich, D.L. Peterson: A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024 (1959)

    Article  CAS  Google Scholar 

  29. Y.S. Ho: Selection of optimum sorption isotherm. Carbon 42(10), 2115–2116 (2004)

    Article  CAS  Google Scholar 

  30. L. Kubelková, B. Wichterlová, P.A. Jacobs, N.I. Jaeger: Zeolite Chemistry and Catalysis. Elsevier, Amsterdam (1991)

    Google Scholar 

  31. V. Alimohammadi, M. Sedighi, E. Jabbari: Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes. Ecol. Eng. 102, 90–7 (2017)

    Article  Google Scholar 

  32. F. Chen, Q. Gao, G. Hong, J. Ni: Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J. Magn. Magn. Mater. 320(11), 1775–1780 (2008)

    Article  CAS  Google Scholar 

  33. O. Korkuna, R. Leboda, B.J. Skubiszewska-Zie, T. Vrublevs’Ka, V.M. Gun’Ko, J. Ryczkowski: Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater. 87(3), 243–254 (2006)

    Article  CAS  Google Scholar 

  34. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta: Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 5(24), 18438–18450 (2015)

    Article  CAS  Google Scholar 

  35. A. Moret, J. Rubio: Sulphate and molybdate ions uptake by chitin-based shrimp shells. Miner. Eng. 16(8), 715–722 (2003)

    Article  CAS  Google Scholar 

  36. B.H. Hameed, A.T. Mohd Din, Ahmad: Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J. Hazard. Mater. 141(3), 819–825 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Akhbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salami, A.H., Bonakdari, H., Akhbari, A. et al. Performance assessment of modified clinoptilolite and magnetic nanotubes on sulfate removal and potential application in natural river samples. J Incl Phenom Macrocycl Chem 97, 51–63 (2020). https://doi.org/10.1007/s10847-020-00982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00982-3

Keywords

Navigation