We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Synthesis and structures of N-(4-picolyl)azacalix[4]arene and its bridged derivatives | SpringerLink

Synthesis and structures of N-(4-picolyl)azacalix[4]arene and its bridged derivatives


Azacalixarenes have side arms (N-substituents) on the nitrogen atoms in their macrocyclic ring systems; thus, a variety of molecular designs are possible by modifying these side arms. This is a special feature of azacalixarene system which is not available in calix[n]arenes. In this paper, we used azacalix[] and []arenes because these compounds have concave cavities. The cavity size of the azacalix[] structure is small like the calix[4]arenes, but, supramolecular systems can be designed in which two or three azacalix units are connected by covalent or coordination bonds. Previously reported compounds, N-(4-picolyl)-[] or []arenes, can be applied for this purpose. The 4-picolyl group can form covalent bonds with alkylation and form coordination bonds with a variety of transition metal ions. By using these bonds, we extend the cavity size of the azacalixarenes and construct newly designed supramolecular structures. We expected that these molecules would form larger molecular cavities upon side arm modification, and inclusion abilities of these cavities can be extended compared to the azacalixarenes of small cavity sizes. However, most of these molecular structures could not be determined, and none showed inclusion phenomena contrary to our expectations. Only the molecular structure of a p-xylylene-bridged molecule was confirmed, which possessed a self-inclusion structure in which the bridging unit (p-xylylene) was encapsulated by two azacalixarene cavities. Additionally, it was found that p-methyl-N-(4-picolyl)azacalix[]arene 1 formed two molecular packing modes depending on the recrystallizing solvents. One is stacked structure by π–π interactions, and another is capsule type structure in which two solvent molecules were encapsulated.

Graphic abstract

A self-inclusion type cage molecule was obtained by connecting N-(4-picolyl)azacalix[]arene with a p-xylylene unit.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Scheme 5
Fig. 5
Fig. 6


  1. 1.

    Takemura, H.: Azacalixarenes: synthesis, complexation, and structures. J. Incl. Phenom. 42, 169 (2002)

    CAS  Article  Google Scholar 

  2. 2.

    Takemura, H., Yoshimura, K., Khan, I.U., Shinmyozu, T., Inazu, T.: The first synthesis and properties of hexahomotriazacalix[3]arene. Tetrahedron Lett. 33, 5775 (1992)

    CAS  Article  Google Scholar 

  3. 3.

    Khan, I.U., Takemura, H., Suenaga, M., Shinmyozu, T., Inazu, T.: Azacalixarenes: new macrocyclic molecules with dimethyleneaza bridging of calix[4]arene system. J. Org. Chem. 58, 3158 (1993)

    CAS  Article  Google Scholar 

  4. 4.

    Ito, K., Noike, M., Kida, A., Ohba, Y.: Syntheses of chiral homoazacalix[4]arenes incorporating amino acid residues: molecular recognition for racemic quaternary ammonium ions. J. Org. Chem. 67, 7519 (2002)

    CAS  Article  Google Scholar 

  5. 5.

    Takemura, H., Iwanaga, T., Shinmyozu, T.: Structures and C-H···π interactions in DMF inclusion complexes of homoazacalix[4]arenes. Tetrahedron Lett. 46, 6687 (2005)

    CAS  Article  Google Scholar 

  6. 6.

    Nishio, M.: “Yuki kagakusha no tameno bunsikanryoku nyumon”, Kodan-sha, ISBN: 4-06-153387-8, p. 66. (2000)

  7. 7.

    Nishio, M., Hirota, M., Umezawa, Y.: The CH/π Interaction: evidence, nature, and consequences. Wiley, Hoboken, ISBN: 978-0-471-25290-0, (1998)

  8. 8.

    Sameni, S., Jeunesse, C., Matt, D., Toupet, L.: Calix[4]arene-Phosphine Dimers: precursors of flexible metallo-capsules and self-compacting molecules. Chem. Eur. J. 15, 10446 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    Zadmard, R., Taghvaei-Ganjali, S., Gorji, B.: Covalently linked at the lower rim double-calix[4]arene as a precursor for multicavity supramolecular receptor. Synth. Commun. 38, 1830 (2008)

    CAS  Article  Google Scholar 

  10. 10.

    Arduini, A., Credi, A., Faimani, G., Massera, C., Pochini, A., Secchi, A., Semeraro, M., Silvi, S., Ugozzoli, F.: Chem. Eur. J. 14, 98 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    Kerdpaiboon, N., Tomapatanaget, B., Chailapakul, O., Tuntulani, T.: Calix[4]quinones derived from double calix[4]arenes: synthesis, complexation, and electrochemical properties toward alkali metal ions. J. Org. Chem. 70, 4797 (2005)

    CAS  Article  Google Scholar 

  12. 12.

    Hwang, G.T., Kim, B.H.: Synthesis and binding studies of multiple calix[4]arenes. Tetrahedron 58, 9019 (2002)

    CAS  Article  Google Scholar 

  13. 13.

    Notti, A., Occhipinti, S., Pappalardo, S., Parisi, M.F., Pisagatti, I., White, A.J.P., Williams, D.J.: Calix[4]- and calix[5]arene-based multi-cavity macrocycles. J. Org. Chem. 67, 7569 (2002)

    CAS  Article  Google Scholar 

  14. 14.

    Li, J.-S., Chen, Y.-Y., Zhong, Z.-L., Lu, X.-R., Zhang, T., Yan, J.-L.: Convenient preparation of novel calix[n]cryptands (n = 4, 6). Chem. Lett. 28, 881 (1999)

    Article  Google Scholar 

  15. 15.

    Neri, P., Bottino, A., Cunsolo, F., Piattelli, M., Gavuzzo, E.: 5,5′-Bicalix[4]arene: the bridgeless prototype of double calix[4]arenes of the “head-to-head” type. Angew. Chem. Int. Ed. 37, 166 (1998)

    CAS  Article  Google Scholar 

  16. 16.

    Struck, O., Chrisstoffels, L.A.J., Lugtenberg, R.J.W., Verboom, W., van Hummel, G.J., Harkema, S., Reinhoudt, D.N.: Head-to-head linked double calix[4]arenes: convenient synthesis and complexation properties. J. Org. Chem. 62, 2487 (1997)

    CAS  Article  Google Scholar 

  17. 17.

    Aleksiuk, O., Biali, S.E.: Dixanthylene double calix[6]arene. J. Org. Chem. 61, 5670 (1996)

    CAS  Article  Google Scholar 

  18. 18.

    Asfari, Z., Weiss, J., Vicens, J.: Double-calixarene design, synthesis, and properties. Synlett 1993, 719 (1993)

    Article  Google Scholar 

  19. 19.

    Asfari, Z., Weiss, J., Pappalardo, S., Vicens, J.: Synthesis and properties of double-calix[4]-arenes, doubly-crowned calix[4]-arenes, and double-calix-crowns. Pure Appl. Chem. 65, 585 (1993)

    CAS  Article  Google Scholar 

  20. 20.

    Arduini, A., Manfredi, G., Pochini, A., Sicuri, A.R., Ungaro, R.: Selective formylation of calix[4]arenes at the ‘upper rim’ and synthesis of new cavitands. J. Chem. Soc. Chem. Commun. 14, 936 (1991)

    Article  Google Scholar 

  21. 21.

    Kraft, D., Van Loon, J.D., Owens, M., Verboom, W., Vogt, W., McKervey, M.A., Boehmer, V., Reinhoudt, D.N.: Double and triple calix[4]arenes connected via the oxygen functions. Tetrahedron Lett. 31, 4941 (1990)

    CAS  Article  Google Scholar 

  22. 22.

    Boehmer, V., Goldmann, H., Vogt, W., Vicens, J., Asfari, Z.: The synthesis of double-calixarenes. Tetrahedron Lett. 30, 1391 (1989)

    CAS  Article  Google Scholar 

  23. 23.

    Gonzalez-Delgado, A.M., Giner-Casares, J.J., Brezesinski, G., Regnouf-de-Vains, J.-B., Camacho, L.: Langmuir monolayers of an inclusion complex formed by a new calixarene derivative and fullerene. Langmuir 28, 12114 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    Haino, T., Fukunaga, C., Fukazawa, Y.: A new calix[5]arene-based container: selective extraction of higher fullerenes. Org. Lett. 8, 3545 (2006)

    CAS  Article  Google Scholar 

  25. 25.

    Diver, C., Lawrance, G.A.: Trifluoromethanesulphonato-O complexes of platinum(II) and palladium(II). J. Chem. Soc. Dalton Trans. 4, 931 (1988)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hiroyuki Takemura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1655 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takemura, H., Mogami, Y., Okayama, K. et al. Synthesis and structures of N-(4-picolyl)azacalix[4]arene and its bridged derivatives. J Incl Phenom Macrocycl Chem 95, 235–246 (2019). https://doi.org/10.1007/s10847-019-00939-1

Download citation


  • Azacyclophanes
  • Azacalixarenes
  • Macrocycles
  • Supramolecules