Skip to main content
Log in

On the macrocyclization selectivity of meta-substituted diamines and dialdehydes: towards macrocycles with tunable functional peripheries

Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The efficient preparation of functional rigid and soluble macrocycles remains a challenge for synthetic chemists. Here, we exploit the thermodynamic control of dynamic covalent chemistry to investigate the influence of the monomer structure on the macrocyclization selectivity. A series of rigid cyclic hexamer has been synthesized by imine condensation of benzene building blocks, i.e. meta-substituted diamines and dialdehydes, templated by calcium(II) chloride. The monomers were designed to feature various additional functional groups either available for further post-cyclization modifications or acting as solubilizing groups. The cyclization selectivity was systematically investigated and optimized depending on the length of the applied solubilizing group and on the nature of the additional functional group. A selectivity up to 92% was reached for the macrocyclization exhibiting trifluoromethyl and bromine groups at the outer periphery and hydroxyl groups in the cavity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iyoda, M., Shimizu, H.: Multifunctional π-expanded oligothiophene macrocycles. Chem. Soc. Rev. (2015). https://doi.org/10.1039/c5cs00388a

    Article  PubMed  Google Scholar 

  2. Das, B., McPherson, J.N., Colbran, S.B.: Oligomers and macrocycles with [m] pyridine [n] pyrrole (m + n ≥ 3) domains: formation and applications of anion, guest molecule and metal ion complexes. Coord. Chem. Rev. (2018). https://doi.org/10.1016/j.ccr.2018.02.015

    Article  Google Scholar 

  3. Hger, S.: Highly efficient methods for the preparation of shape-persistent macrocyclics. J. Polym. Sci. A (1999). https://doi.org/10.1002/(sici)1099-0518(19990801)37:15%3c2685:aid-pola1%3e3.0.co;2-s

    Article  Google Scholar 

  4. Höger, S.: Shape-persistent macrocycles: from molecules to materials. Chemistry (Weinheim an der Bergstrasse, Germany) (2004). https://doi.org/10.1002/chem.200305496

    Article  Google Scholar 

  5. Iyoda, M., Yamakawa, J., Rahman, M.J.: Conjugated macrocycles: concepts and applications. Angew. Chem. Int. Ed. Engl. (2011). https://doi.org/10.1002/anie.201006198

    Article  PubMed  Google Scholar 

  6. Naddo, T., Che, Y., Zhang, W., Balakrishnan, K., Yang, X., Yen, M., Zhao, J., Moore, J.S., Zang, L.: Detection of explosives with a fluorescent nanofibril film. J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja070747q

    Article  PubMed  Google Scholar 

  7. Du, Y., Yang, H., Wan, S., Jin, Y., Zhang, W.: A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO2. J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta01188a

    Article  Google Scholar 

  8. Hu, X., Yu, C., D Okochi, K., Jin, Y., Liu, Z., Zhang, W.: Phenylene vinylene macrocycles as artificial transmembrane transporters. Chem. Commun. (Camb.) (2016). https://doi.org/10.1039/c6cc01657j

    Article  Google Scholar 

  9. Zhang, W., Moore, J.S.: Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. ChemInform (2006). https://doi.org/10.1002/chin.200641239

    Article  Google Scholar 

  10. Lehn, J.-M.: From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. ChemInform (2007). https://doi.org/10.1002/chin.200720232

    Article  Google Scholar 

  11. Jin, Y., Yu, C., Denman, R.J., Zhang, W.: Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. (2013). https://doi.org/10.1039/c3cs60044k

    Article  PubMed  Google Scholar 

  12. Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M., Stoddart, J.F.: Dynamic covalent chemistry. Angew. Chem. Int. Ed. (2002). https://doi.org/10.1002/1521-3773(20020503)41:9%3c1460:aid-anie11111460%3e3.0.co;2-n

    Article  Google Scholar 

  13. Jin, Y., Wang, Q., Taynton, P., Zhang, W.: Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. (2014). https://doi.org/10.1021/ar500037v

    Article  PubMed  Google Scholar 

  14. Ge, P.-H., Fu, W., Herrmann, W.A., Herdtweck, E., Campana, C., Adams, R.D., Bunz, U.H.F.: Structural characterization of a cyclohexamericmeta-phenyleneethynylene made by alkyne metathesis with in situ catalysts. Angew. Chem. (2000). https://doi.org/10.1002/1521-3757(20001016)112:20%3c3753:aid-ange3753%3e3.0.co;2-b

    Article  Google Scholar 

  15. Zhang, W., Moore, J.S.: Arylene ethynylene macrocycles prepared by precipitation-driven alkyne metathesis. J. Am. Chem. Soc. (2004). https://doi.org/10.1021/ja046531v

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heppekausen, J., Stade, R., Goddard, R., Fürstner, A.: Practical new silyloxy-based alkyne metathesis catalysts with optimized activity and selectivity profiles. J. Am. Chem. Soc. (2010). https://doi.org/10.1021/ja104800w

    Article  PubMed  Google Scholar 

  17. Yang, H., Liu, Z., Zhang, W.: Multidentate triphenolsilane-based alkyne metathesis catalysts. Adv. Synth. Catal. (2013). https://doi.org/10.1002/adsc.201201105

    Article  Google Scholar 

  18. Zhao, D., Moore, J.S.: Synthesis and self-association of an imine-containing m-phenylene ethynylene macrocycle. J. Org. Chem. (2002). https://doi.org/10.1021/jo010918o

    Article  PubMed  Google Scholar 

  19. Jin, Y., Zhang, A., Huang, Y., Zhang, W.: Shape-persistent arylenevinylene macrocycles (AVMs) prepared via acyclic diene metathesis macrocyclization (ADMAC). Chem. Commun. (Camb.) (2010). https://doi.org/10.1039/c0cc02941f

    Article  Google Scholar 

  20. Hartley, C.S., Moore, J.S.: Programmed dynamic covalent assembly of unsymmetrical macrocycles. J. Am. Chem. Soc. (2007). https://doi.org/10.1021/ja0745963

    Article  PubMed  Google Scholar 

  21. Okochi, K.D., Jin, Y., Zhang, W.: Highly efficient one-pot synthesis of hetero-sequenced shape-persistent macrocycles through orthogonal dynamic covalent chemistry (ODCC). Chem. Commun. (Camb.) (2013). https://doi.org/10.1039/c2cc33078d

    Article  Google Scholar 

  22. Meyer, C.D., Joiner, C.S., Stoddart, J.F.: Template-directed synthesis employing reversible imine bond formation. Chem. Soc. Rev. (2007). https://doi.org/10.1039/b513441m

    Article  PubMed  Google Scholar 

  23. Melson, G.A., Busch, D.H.: Reactions of coordinated ligands. X. The formation and properties of a tetradentate macrocyclic ligand by the self-condensation of o-aminobenzaldehyde in the presence of metal ions. J. Am. Chem. Soc. (1964). https://doi.org/10.1021/ja01076a022

    Article  Google Scholar 

  24. Storm, O., Lüning, U.: How to synthesize macrocycles efficiently by using virtual combinatorial libraries. Chemistry (Weinheim an der Bergstrasse, Germany) (2002). https://doi.org/10.1002/1521-3765(20020215)8:4%3c793:aid-chem793%3e3.0.co;2-u

    Article  Google Scholar 

  25. Höger, S.: Shape-persistent rings and wheels. Pure Appl. Chem. (2010). https://doi.org/10.1351/PAC-CON-09-09-01

    Article  Google Scholar 

  26. MacLachlan, M.J.: conjugated shape-persistent macrocycles via schiff base condensation: new motifs for supramolecular chemistry. ChemInform (2006). https://doi.org/10.1002/chin.200628264

    Article  Google Scholar 

  27. Shopsowitz, K.E., Edwards, D., Gallant, A.J., MacLachlan, M.J.: Highly substituted Schiff base macrocycles via hexasubstituted benzene: a convenient double Duff formylation of catechol derivatives. Tetrahedron (2009). https://doi.org/10.1016/j.tet.2009.07.094

    Article  Google Scholar 

  28. Ferguson, J.S., Yamato, K., Liu, R., He, L., Zeng, X.C., Gong, B.: One-pot formation of large macrocycles with modifiable peripheries and internal cavities. Angew. Chem. (2009). https://doi.org/10.1002/ange.200900584

    Article  Google Scholar 

  29. Akine, S., Taniguchi, T., Nabeshima, T.: Synthesis and crystal structure of a novel triangular macrocyclic molecule, tris(H 2 saloph), † †H2saloph = N, N′-disalicylidene-o-phenylenediamine and its water complex. Tetrahedron Lett. (2001). https://doi.org/10.1016/s0040-4039(01)01943-8

    Article  Google Scholar 

  30. Gallant, A.J., Hui, J.K.-H., Zahariev, F.E., Wang, Y.A., MacLachlan, M.J.: Synthesis, structure, and computational studies of soluble conjugated multidentate macrocycles. J. Org. Chem. (2005). https://doi.org/10.1021/jo050742g

    Article  PubMed  Google Scholar 

  31. Reinhard, D., Schöttner, L., Brosius, V., Rominger, F., Mastalerz, M.: Synthesis of para-aryl-substituted salicyldialdehydes. Eur. J. Org. Chem. (2015). https://doi.org/10.1002/ejoc.201500228

    Article  Google Scholar 

  32. Duff, J.C., Bills, E.J.: 273 Reactions between hexamethylenetetramine and phenolic compounds. Part I. A new method for the preparation of 3- and 5-aldehydosalicylic acids. J. Chem. Soc. (1932). https://doi.org/10.1039/JR9320001987

    Article  Google Scholar 

  33. Brooker, M.D., Cooper, S.M., Hodges, D.R., Carter, R.R., Wyatt, J.K.: Studies of microwave-enhanced Suzuki-Miyaura vinylation of electron-rich sterically hindered substrates utilizing potassium vinyltrifluoroborate. Tetrahedron Lett. (2010). https://doi.org/10.1016/j.tetlet.2010.10.087

    Article  PubMed  PubMed Central  Google Scholar 

  34. Akine, S., Hashimoto, D., Saiki, T., Nabeshima, T.: Synthesis and structure of polyhydroxyl rigid triangular nano-macrocyclic imine having multiple hydrogen-bonding sites. Tetrahedron Lett. (2004). https://doi.org/10.1016/j.tetlet.2004.04.015

    Article  Google Scholar 

  35. Houjou, H., Lee, S.-K., Hishikawa, Y., Nagawa, Y., Hiratani, K.: Highly selective formation of 2∶2 macrocycles from a novel hydroxybenzaldehyde derivative and diamines. Chem. Commun. (2000). https://doi.org/10.1039/b005536k

    Article  Google Scholar 

  36. Terao, J., Nakamura, M., Kambe, N.: Non-catalytic conversion of C-F bonds of benzotrifluorides to C-C bonds using organoaluminium reagents. Chem. Commun. (Camb.) (2009). https://doi.org/10.1039/b915620h

    Article  Google Scholar 

  37. Fave, G.M.L.: Some reactions of the trifluoromethyl group in the benzotrifluoride series. I. Hydrolysis. J. Am. Chem. Soc. (1949). https://doi.org/10.1021/ja01180a507

    Article  Google Scholar 

  38. Scheurer, P.G., Le Fave, G.M.: Isophthalic and terephthalic acids 1. J. Am. Chem. Soc. (1950). https://doi.org/10.1021/ja01163a539

    Article  Google Scholar 

  39. Zhu, J., Pérez, M., Caputo, C.B., Stephan, D.W.: Use of trifluoromethyl groups for catalytic benzylation and alkylation with subsequent hydrodefluorination. Angew. Chem. (2016). https://doi.org/10.1002/ange.201510494

    Article  Google Scholar 

  40. Kempe, K., Krieg, A., Becer, C.R., Schubert, U.S.: “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem. Soc. Rev. (2012). https://doi.org/10.1039/c1cs15107j

    Article  PubMed  Google Scholar 

  41. Lammens, M., Fournier, D., Fijten, M.W.M., Hoogenboom, R., Du Prez, F.: Star-shaped polyacrylates: highly functionalized architectures via CuAAC click conjugation. Macromol. Rapid Commun. (2009). https://doi.org/10.1002/marc.200900494

    Article  PubMed  Google Scholar 

  42. Khuong, K.S., Jones, W.H., Pryor, W.A., Houk, K.N.: The mechanism of the self-initiated thermal polymerization of styrene. Theoretical solution of a classic problem. J. Am. Chem. Soc. (2005). https://doi.org/10.1021/ja0448667

    Article  PubMed  Google Scholar 

Download references

Acknowlegdements

Christopher Barner-Kowollik is acknowledges a Laureate Fellowship from the Australian Research Council (ARC) and continued key support from the Queensland University of Technology (QUT). The authors would like to thank T. Sattelberger, C. Albrecht and T. Anh for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Audrey Llevot or Michael A. R. Meier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8999 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, G., Llevot, A., Löser, P. et al. On the macrocyclization selectivity of meta-substituted diamines and dialdehydes: towards macrocycles with tunable functional peripheries. J Incl Phenom Macrocycl Chem 95, 119–134 (2019). https://doi.org/10.1007/s10847-019-00931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00931-9

Keywords

Navigation