Advertisement

On the macrocyclization selectivity of meta-substituted diamines and dialdehydes: towards macrocycles with tunable functional peripheries

  • Gregor Klein
  • Audrey LlevotEmail author
  • Pia Löser
  • Benjamin Bitterer
  • Julian Helfferich
  • Wolfgang Wenzel
  • Christopher Barner-Kowollik
  • Michael A. R. MeierEmail author
Original Article
  • 65 Downloads

Abstract

The efficient preparation of functional rigid and soluble macrocycles remains a challenge for synthetic chemists. Here, we exploit the thermodynamic control of dynamic covalent chemistry to investigate the influence of the monomer structure on the macrocyclization selectivity. A series of rigid cyclic hexamer has been synthesized by imine condensation of benzene building blocks, i.e. meta-substituted diamines and dialdehydes, templated by calcium(II) chloride. The monomers were designed to feature various additional functional groups either available for further post-cyclization modifications or acting as solubilizing groups. The cyclization selectivity was systematically investigated and optimized depending on the length of the applied solubilizing group and on the nature of the additional functional group. A selectivity up to 92% was reached for the macrocyclization exhibiting trifluoromethyl and bromine groups at the outer periphery and hydroxyl groups in the cavity.

Graphic abstract

Keywords

Macrocycle Template Schiff base Selectivity 

Notes

Acknowlegdements

Christopher Barner-Kowollik is acknowledges a Laureate Fellowship from the Australian Research Council (ARC) and continued key support from the Queensland University of Technology (QUT). The authors would like to thank T. Sattelberger, C. Albrecht and T. Anh for experimental support.

Supplementary material

10847_2019_931_MOESM1_ESM.docx (8.8 mb)
Supplementary material 1 (DOCX 8999 kb)

References

  1. 1.
    Iyoda, M., Shimizu, H.: Multifunctional π-expanded oligothiophene macrocycles. Chem. Soc. Rev. (2015).  https://doi.org/10.1039/c5cs00388a Google Scholar
  2. 2.
    Das, B., McPherson, J.N., Colbran, S.B.: Oligomers and macrocycles with [m] pyridine [n] pyrrole (m + n ≥ 3) domains: formation and applications of anion, guest molecule and metal ion complexes. Coord. Chem. Rev. (2018).  https://doi.org/10.1016/j.ccr.2018.02.015 Google Scholar
  3. 3.
    Hger, S.: Highly efficient methods for the preparation of shape-persistent macrocyclics. J. Polym. Sci. A (1999).  https://doi.org/10.1002/(sici)1099-0518(19990801)37:15%3c2685:aid-pola1%3e3.0.co;2-s Google Scholar
  4. 4.
    Höger, S.: Shape-persistent macrocycles: from molecules to materials. Chemistry (Weinheim an der Bergstrasse, Germany) (2004).  https://doi.org/10.1002/chem.200305496 Google Scholar
  5. 5.
    Iyoda, M., Yamakawa, J., Rahman, M.J.: Conjugated macrocycles: concepts and applications. Angew. Chem. Int. Ed. Engl. (2011).  https://doi.org/10.1002/anie.201006198 Google Scholar
  6. 6.
    Naddo, T., Che, Y., Zhang, W., Balakrishnan, K., Yang, X., Yen, M., Zhao, J., Moore, J.S., Zang, L.: Detection of explosives with a fluorescent nanofibril film. J. Am. Chem. Soc. (2007).  https://doi.org/10.1021/ja070747q Google Scholar
  7. 7.
    Du, Y., Yang, H., Wan, S., Jin, Y., Zhang, W.: A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO2. J. Mater. Chem. A (2017).  https://doi.org/10.1039/c7ta01188a Google Scholar
  8. 8.
    Hu, X., Yu, C., D Okochi, K., Jin, Y., Liu, Z., Zhang, W.: Phenylene vinylene macrocycles as artificial transmembrane transporters. Chem. Commun. (Camb.) (2016).  https://doi.org/10.1039/c6cc01657j Google Scholar
  9. 9.
    Zhang, W., Moore, J.S.: Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. ChemInform (2006).  https://doi.org/10.1002/chin.200641239 Google Scholar
  10. 10.
    Lehn, J.-M.: From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. ChemInform (2007).  https://doi.org/10.1002/chin.200720232 Google Scholar
  11. 11.
    Jin, Y., Yu, C., Denman, R.J., Zhang, W.: Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. (2013).  https://doi.org/10.1039/c3cs60044k Google Scholar
  12. 12.
    Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M., Stoddart, J.F.: Dynamic covalent chemistry. Angew. Chem. Int. Ed. (2002).  https://doi.org/10.1002/1521-3773(20020503)41:9%3c1460:aid-anie11111460%3e3.0.co;2-n Google Scholar
  13. 13.
    Jin, Y., Wang, Q., Taynton, P., Zhang, W.: Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. (2014).  https://doi.org/10.1021/ar500037v Google Scholar
  14. 14.
    Ge, P.-H., Fu, W., Herrmann, W.A., Herdtweck, E., Campana, C., Adams, R.D., Bunz, U.H.F.: Structural characterization of a cyclohexamericmeta-phenyleneethynylene made by alkyne metathesis with in situ catalysts. Angew. Chem. (2000).  https://doi.org/10.1002/1521-3757(20001016)112:20%3c3753:aid-ange3753%3e3.0.co;2-b Google Scholar
  15. 15.
    Zhang, W., Moore, J.S.: Arylene ethynylene macrocycles prepared by precipitation-driven alkyne metathesis. J. Am. Chem. Soc. (2004).  https://doi.org/10.1021/ja046531v Google Scholar
  16. 16.
    Heppekausen, J., Stade, R., Goddard, R., Fürstner, A.: Practical new silyloxy-based alkyne metathesis catalysts with optimized activity and selectivity profiles. J. Am. Chem. Soc. (2010).  https://doi.org/10.1021/ja104800w Google Scholar
  17. 17.
    Yang, H., Liu, Z., Zhang, W.: Multidentate triphenolsilane-based alkyne metathesis catalysts. Adv. Synth. Catal. (2013).  https://doi.org/10.1002/adsc.201201105 Google Scholar
  18. 18.
    Zhao, D., Moore, J.S.: Synthesis and self-association of an imine-containing m-phenylene ethynylene macrocycle. J. Org. Chem. (2002).  https://doi.org/10.1021/jo010918o Google Scholar
  19. 19.
    Jin, Y., Zhang, A., Huang, Y., Zhang, W.: Shape-persistent arylenevinylene macrocycles (AVMs) prepared via acyclic diene metathesis macrocyclization (ADMAC). Chem. Commun. (Camb.) (2010).  https://doi.org/10.1039/c0cc02941f Google Scholar
  20. 20.
    Hartley, C.S., Moore, J.S.: Programmed dynamic covalent assembly of unsymmetrical macrocycles. J. Am. Chem. Soc. (2007).  https://doi.org/10.1021/ja0745963 Google Scholar
  21. 21.
    Okochi, K.D., Jin, Y., Zhang, W.: Highly efficient one-pot synthesis of hetero-sequenced shape-persistent macrocycles through orthogonal dynamic covalent chemistry (ODCC). Chem. Commun. (Camb.) (2013).  https://doi.org/10.1039/c2cc33078d Google Scholar
  22. 22.
    Meyer, C.D., Joiner, C.S., Stoddart, J.F.: Template-directed synthesis employing reversible imine bond formation. Chem. Soc. Rev. (2007).  https://doi.org/10.1039/b513441m Google Scholar
  23. 23.
    Melson, G.A., Busch, D.H.: Reactions of coordinated ligands. X. The formation and properties of a tetradentate macrocyclic ligand by the self-condensation of o-aminobenzaldehyde in the presence of metal ions. J. Am. Chem. Soc. (1964).  https://doi.org/10.1021/ja01076a022 Google Scholar
  24. 24.
    Storm, O., Lüning, U.: How to synthesize macrocycles efficiently by using virtual combinatorial libraries. Chemistry (Weinheim an der Bergstrasse, Germany) (2002).  https://doi.org/10.1002/1521-3765(20020215)8:4%3c793:aid-chem793%3e3.0.co;2-u Google Scholar
  25. 25.
    Höger, S.: Shape-persistent rings and wheels. Pure Appl. Chem. (2010).  https://doi.org/10.1351/PAC-CON-09-09-01 Google Scholar
  26. 26.
    MacLachlan, M.J.: conjugated shape-persistent macrocycles via schiff base condensation: new motifs for supramolecular chemistry. ChemInform (2006).  https://doi.org/10.1002/chin.200628264 Google Scholar
  27. 27.
    Shopsowitz, K.E., Edwards, D., Gallant, A.J., MacLachlan, M.J.: Highly substituted Schiff base macrocycles via hexasubstituted benzene: a convenient double Duff formylation of catechol derivatives. Tetrahedron (2009).  https://doi.org/10.1016/j.tet.2009.07.094 Google Scholar
  28. 28.
    Ferguson, J.S., Yamato, K., Liu, R., He, L., Zeng, X.C., Gong, B.: One-pot formation of large macrocycles with modifiable peripheries and internal cavities. Angew. Chem. (2009).  https://doi.org/10.1002/ange.200900584 Google Scholar
  29. 29.
    Akine, S., Taniguchi, T., Nabeshima, T.: Synthesis and crystal structure of a novel triangular macrocyclic molecule, tris(H 2 saloph), † †H2saloph = N, N′-disalicylidene-o-phenylenediamine and its water complex. Tetrahedron Lett. (2001).  https://doi.org/10.1016/s0040-4039(01)01943-8 Google Scholar
  30. 30.
    Gallant, A.J., Hui, J.K.-H., Zahariev, F.E., Wang, Y.A., MacLachlan, M.J.: Synthesis, structure, and computational studies of soluble conjugated multidentate macrocycles. J. Org. Chem. (2005).  https://doi.org/10.1021/jo050742g Google Scholar
  31. 31.
    Reinhard, D., Schöttner, L., Brosius, V., Rominger, F., Mastalerz, M.: Synthesis of para-aryl-substituted salicyldialdehydes. Eur. J. Org. Chem. (2015).  https://doi.org/10.1002/ejoc.201500228 Google Scholar
  32. 32.
    Duff, J.C., Bills, E.J.: 273 Reactions between hexamethylenetetramine and phenolic compounds. Part I. A new method for the preparation of 3- and 5-aldehydosalicylic acids. J. Chem. Soc. (1932).  https://doi.org/10.1039/JR9320001987 Google Scholar
  33. 33.
    Brooker, M.D., Cooper, S.M., Hodges, D.R., Carter, R.R., Wyatt, J.K.: Studies of microwave-enhanced Suzuki-Miyaura vinylation of electron-rich sterically hindered substrates utilizing potassium vinyltrifluoroborate. Tetrahedron Lett. (2010).  https://doi.org/10.1016/j.tetlet.2010.10.087 Google Scholar
  34. 34.
    Akine, S., Hashimoto, D., Saiki, T., Nabeshima, T.: Synthesis and structure of polyhydroxyl rigid triangular nano-macrocyclic imine having multiple hydrogen-bonding sites. Tetrahedron Lett. (2004).  https://doi.org/10.1016/j.tetlet.2004.04.015 Google Scholar
  35. 35.
    Houjou, H., Lee, S.-K., Hishikawa, Y., Nagawa, Y., Hiratani, K.: Highly selective formation of 2∶2 macrocycles from a novel hydroxybenzaldehyde derivative and diamines. Chem. Commun. (2000).  https://doi.org/10.1039/b005536k Google Scholar
  36. 36.
    Terao, J., Nakamura, M., Kambe, N.: Non-catalytic conversion of C-F bonds of benzotrifluorides to C-C bonds using organoaluminium reagents. Chem. Commun. (Camb.) (2009).  https://doi.org/10.1039/b915620h Google Scholar
  37. 37.
    Fave, G.M.L.: Some reactions of the trifluoromethyl group in the benzotrifluoride series. I. Hydrolysis. J. Am. Chem. Soc. (1949).  https://doi.org/10.1021/ja01180a507 Google Scholar
  38. 38.
    Scheurer, P.G., Le Fave, G.M.: Isophthalic and terephthalic acids 1. J. Am. Chem. Soc. (1950).  https://doi.org/10.1021/ja01163a539 Google Scholar
  39. 39.
    Zhu, J., Pérez, M., Caputo, C.B., Stephan, D.W.: Use of trifluoromethyl groups for catalytic benzylation and alkylation with subsequent hydrodefluorination. Angew. Chem. (2016).  https://doi.org/10.1002/ange.201510494 Google Scholar
  40. 40.
    Kempe, K., Krieg, A., Becer, C.R., Schubert, U.S.: “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem. Soc. Rev. (2012).  https://doi.org/10.1039/c1cs15107j Google Scholar
  41. 41.
    Lammens, M., Fournier, D., Fijten, M.W.M., Hoogenboom, R., Du Prez, F.: Star-shaped polyacrylates: highly functionalized architectures via CuAAC click conjugation. Macromol. Rapid Commun. (2009).  https://doi.org/10.1002/marc.200900494 Google Scholar
  42. 42.
    Khuong, K.S., Jones, W.H., Pryor, W.A., Houk, K.N.: The mechanism of the self-initiated thermal polymerization of styrene. Theoretical solution of a classic problem. J. Am. Chem. Soc. (2005).  https://doi.org/10.1021/ja0448667 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Applied ChemistryInstitute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629University of Bordeaux, CNRS, Bordeaux INPPessac CedexFrance
  3. 3.Soft Matter Materials Laboratory, School of Chemistry, Physics and Mechanical EngineeringQueensland University of Technology (QUT)BrisbaneAustralia
  4. 4.Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations