Structural diversity of metal–organic frameworks via employment of azamacrocycles as a building block

Abstract

Research on incorporating macrocycles into metal–organic frameworks (MOFs) has been performed intensively due to the opportunities afforded by merging a merit of macrocycles with MOF chemistry, which lead to novel hybrid materials for potential application. Among the numerous kinds of macrocycles, azamacrocycles are used as traditional and popular chelating agents in supramolecular coordination chemistry, because they are very easily functionalized by joining pendant arms and possess a strong propensity to complex metal cations, accounting for the amine functionalities. With this as background, many types of azamacrocyclic MOFs have been synthesized, granting compositionally and topologically new MOFs. The macrocyclic rings can serve as additional adsorption sites or catalytic sites, and the pendant arms on the macrocycles can also play versatile roles such as structure-directing agents, pore-decorating moieties, or rotatable molecular gates for opening/closing pores. In this review, we comprehensively discuss the syntheses, structures, and features of azamacrocyclic MOFs reported to date. Based on representative studies, advantages of these compounds are described, such as how the azamacrocycles increase the structural diversity and complexity of the MOFs and induce novel structural properties within the architectures.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Reprinted with permission from ref [23]. Copyright 2008 from American Chemical Society

Fig. 2
Fig. 3
Fig. 4

Reprinted with permission from ref [29]. Copyright 2013 from American Chemical Society

Fig. 5
Fig. 6

Reprinted with permission from ref [31]. Copyright 2018 from American Chemical Society

Fig. 7

Reprinted with permission from ref [33]. Copyright 2005 from Wiley-VCH

Fig. 8

Reprinted with permission from ref [34]. Copyright 1998 from American Chemical Society

Fig. 9
Fig. 10

Reprinted with permission from ref [40]. Copyright 2010 from Wiley-VCH

Fig. 11
Fig. 12

Reprinted with permission from ref [42]. Copyright 2009 from Wiley-VCH

Fig. 13

References

  1. 1.

    Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)

    Article  Google Scholar 

  2. 2.

    Suh, M.P., Cheon, Y.E., Lee, E.Y.: Synthesis and functions of porous metallosupramolecular networks. Coord. Chem. Rev. 252, 1007–1026 (2008)

    CAS  Article  Google Scholar 

  3. 3.

    Li, B., Chrzanowski, M., Zhang, Y., Ma, S.: Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 307, 106–129 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    Lee, K.J., Lee, J.H., Jeoung, S., Moon, H.R.: Transformation of metal–organic frameworks/coordination polymers into functional nanostructured materials: experimental approaches based on mechanistic insights. Acc. Chem. Res. 50, 2684–2692 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    Lama, P., Aggarwal, H., Bezuidenhout, C.X., Barbour, L.J.: Giant hysteretic sorption of CO2: in situ crystallographic visualization of guest binding within a breathing framework at 298 K. Angew. Chem. Int. Ed. 55, 13271–13275 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Kim, J.Y., Balderas-Xicohténcatl, R., Zhang, L., Kang, S.G., Hirscher, M., Oh, H., Moon, H.R.: Exploiting diffusion barrier and chemical affinity of metal–organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc. 139, 15135–15141 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Kim, J.Y., Zhang, L., Balderas-Xicohténcatl, R., Pack, J., Hirscher, M., Moon, H.R., Oh, H.: Selective hydrogen isotope separation via breathing transition in MIL-53(Al). J. Am. Chem. Soc. 139, 17743–17746 (2018)

    Article  Google Scholar 

  8. 8.

    Kim, T.K., Lee, J.H., Moon, D., Moon, H.R.: Luminescent Li-based metal–organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites. Inorg. Chem. 52, 589–595 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    Liao, P.-Q., She, J.-Q., Zhang, J.-P.: Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 373, 22–48 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    Schneemann, A., Bon, V., Schwedler, I., Senkovska, I., Kaskel, S., Fischer, R.A.: Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    Elsaidi, S.K., Mohamed, M.H., Banerjee, D., Thallapally, P.K.: Flexibility in metal-organic frameworks: a fundamental understanding. Coord. Chem. Rev. 358, 125–152 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    Lee, J.H., Kim, T.K., Suh, M.P., Moon, H.R.: Solvent-induced single-crystal to single-crystal transformation of a Zn4O-containing doubly interpenetrated metal-organic framework with a pcu net. CrystEngComm 17, 8807–8811 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    Lee, J.H., Park, S., Jeoung, S., Moon, H.R.: Single-crystal-to-single-crystal transformation of a coordination polymer from 2D to 3D by [2 + 2] photodimerization assisted by a coexisting flexible ligand. CrystEngComm 19, 3719–3722 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    CAS  Article  Google Scholar 

  15. 15.

    Liu, Z., Nalluri, S.K.M., Stoddart, J.F.: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, H., Zou, R., Zhao, Y.: Macrocycle-based metal-organic frameworks. Coord. Chem. Rev. 292, 74–90 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    Emerson, A.J., Chahine, A., Batten, S.R., Turner, D.R.: Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coord. Chem. Rev. 365, 1–22 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    Stackhouse, C.A., Ma, S.: Azamacrocycle-based metal organic frameworks: design strategies and applications. Polyhedron 145, 154–165 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    Suh, M.P., Moon, H.R.: Coordination polymer open frameworks constructed of macrocyclic complexes. Adv. Inorg. Chem. 59, 39–79 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    Barefield, E.K.: Coordination chemistry of N-tetraalkylated cyclam ligands-A status report. Coord. Chem. Rev. 254, 1607–1627 (2010)

    CAS  Article  Google Scholar 

  21. 21.

    Corriu, R.J.P., Embert, F., Guari, Y., Reyé, C., Guilard, R.: Coordination chemistry in the solid: evidence for coordination modes within hybrid materials different from those in solution. Chem. Eur. J. 8, 5732–5741 (2002)

    CAS  Article  Google Scholar 

  22. 22.

    Rodríguez-Rodríguez, A., Esteban-Gómez, D., Tripier, R., Tircsó, G., Garda, Z., Tóth, I., de Blas, A., Rodríguez-Blas, T., Platas-Iglesias, C.: Lanthanide(III) complexes with a reinforced cyclam ligand show unprecedented kinetic inertness. J. Am. Chem. Soc. 136, 17954–17957 (2014)

    Article  Google Scholar 

  23. 23.

    Zhu, X., Lü, J., Li, X., Gao, S., Li, G., Xiao, F., Cao, R.: Syntheses, structures, near-Infrared, and visible luminescence of lanthanide-organic frameworks with flexible macrocyclic polyamine ligands. Cryst. Growth Des. 8, 1897–1901 (2008)

    CAS  Article  Google Scholar 

  24. 24.

    Zhu, X.-D., Tao, T.-X., Zhou, W.-X., Wang, F.-H., Liu, R.-M., Liu, L., Fu, Y.-Q.: A novel lead(II) porous metal–organic framework constructed from a flexible bifunctional macrocyclic polyamine ligand. Inorg. Chem. Commun. 40, 116–119 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Gao, W.-Y., Niu, Y., Chen, Y., Wojtas, L., Cai, J., Chen, Y.-S., Ma, S.: Porous metal–organic framework based on a macrocyclic tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm 14, 6115–6117 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    Spek, A.L.: PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C: Struct. Chem. 71, 9–18 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    Gao, W.-Y., Chen, Y., Niu, Y., Williams, K., Cash, L., Perez, P.J., Wojtas, L., Cai, J., Chen, Y.-S., Ma, S.: Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Zhu, X.-D., Lin, Z.-J., Liu, T.-F., Xu, B., Cao, R.: Two novel 3d-4f heterometallic frameworks assembled from a flexible bifunctional macrocyclic ligand. Cryst. Growth Des. 12, 4708–4711 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    Carné-Sánchez, A., Bonnet, C.S., Imaz, I., Lorenzo, J., Tóth, É, Maspoch, D.: Relaxometry studies of a highly stable nanoscale metal–organic framework made of Cu(II), Gd(III), and the macrocyclic DOTP. J. Am. Chem. Soc. 135, 17711–17714 (2013)

    Article  Google Scholar 

  30. 30.

    Ariñez-Soriano, J., Albalad, J., Pérez-Carvajal, J., Imaz, I., Busqué, F., Juanhiux, J., Maspoch, D.: Two-step synthesis of heterometallic coordination polymers using a polyazamacrocyclic linker. CrystEngComm 18, 4196–4204 (2016)

    Article  Google Scholar 

  31. 31.

    Zhu, J., Usov, P.M., Xu, W., Celis-Salazar, P.J., Lin, S., Kessinger, M.C., Landaverde-Alvarado, C., Cai, M., May, A.M., Slebodnick, C., Zhu, D., Senanayake, S.D., Morris, A.J.: A new class of metal-cyclam-based zirconium metal–organic frameworks for CO2 adsorption and chemical fixation. J. Am. Chem. Soc. 140, 993–1003 (2018)

    CAS  Article  Google Scholar 

  32. 32.

    Choi, H.J., Suh, M.P.: Synthesis, crystal structure, and properties of a 3-D network assembled by nickel(II) macrocyclic complex and terephthalato bridge. Inorg. Chem. 38, 6309–6312 (1999)

    CAS  Article  Google Scholar 

  33. 33.

    Moon, H.R., Kim, J.H., Suh, M.P.: Redox-active porous metal–organic framework producing silver nanoparticles from AgI ions at room temperature. Angew. Chem. Int. Ed. 44, 1261–1265 (2005)

    CAS  Article  Google Scholar 

  34. 34.

    Choi, H.J., Suh, M.P.: Self-assembly of molecular brick wall and molecular honeycomb from nickel(II) macrocycle and 1,3,5-benzenetricarboxylate: guest-dependent host structures. J. Am. Chem. Soc. 120, 10622–10628 (1998)

    CAS  Article  Google Scholar 

  35. 35.

    Choi, H.J., Lee, T.S., Suh, M.P.: Self-assembly of a molecular floral lace with one-dimensional channels and inclusion of glucose. Angew. Chem. Int. Ed. 38, 1405–1408 (1999)

    CAS  Article  Google Scholar 

  36. 36.

    Suh, M.P., Choi, H.J., So, S.M., Kim, B.M.: A new metal-organic open framework consisting of threefold parallel interwoven (6,3) nets. Inorg. Chem. 42, 676–678 (2003)

    CAS  Article  Google Scholar 

  37. 37.

    Hyun, S., Kim, T.K., Kim, Y.K., Moon, D., Moon, H.R.: Guest-driven structural flexibility of 2D coordination polymers: synthesis, structural characterizations, and gas sorption properties. Inorg. Chem. Commun. 33, 52–56 (2013)

    CAS  Article  Google Scholar 

  38. 38.

    Kim, H., Suh, M.P.: Flexible eightfold interpenetrating diamondoid network generating 1D channels: selective binding with organic guests. Inorg. Chem. 44, 810–812 (2005)

    CAS  Article  Google Scholar 

  39. 39.

    Almáši, M., Zeleňák, V., Zukai, A., Kuchár, J., Čejka, J.: A novel zinc(II) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties. Dalton Trans. 45, 1233–1242 (2016)

    Article  Google Scholar 

  40. 40.

    Moon, H.R., Suh, M.P.: Flexible and redox-active coordination polymer: control of the network structure by pendant arms of a macrocyclic complex. Eur. J. Inorg. Chem. 2010, 3795–3803 (2010)

    Article  Google Scholar 

  41. 41.

    Kim, Y.K., Hyun, S., Lee, J.H., Kim, T.K., Moon, D., Moon, H.R.: Crystal-size effects on carbon dioxide capture of a covalently alkylamine-tethered metal-organic framework constructed by a one-step self-assembly. Sci. Rep. 6, 19337 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    Choi, H.J., Suh, M.P.: Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew. Chem. Int. Ed. 48, 6865–6869 (2009)

    CAS  Article  Google Scholar 

  43. 43.

    Hyun, S., Lee, J.H., Jung, G.Y., Kim, Y.K., Kim, T.K., Jeoung, S., Kwak, S.K., Moon, D., Moon, H.R.: Exploration of gate-opening and breathing phenomena in a tailored flexible metal–organic framework. Inorg. Chem. 55, 1920–1925 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. NRF-2016R1A5A1009405, and NRF-2017R1A2B4008757). J.H.L. acknowledges the Global Ph.D. Fellowship (NRF-2013H1A2A1033501).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hoi Ri Moon.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Moon, H.R. Structural diversity of metal–organic frameworks via employment of azamacrocycles as a building block. J Incl Phenom Macrocycl Chem 92, 237–249 (2018). https://doi.org/10.1007/s10847-018-0855-4

Download citation

Keywords

  • Metal–organic frameworks
  • Azamacrocycles
  • Pendant arms
  • Structural control
  • Open metal sites
  • Flexibility