Skip to main content

Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers


Cyclodextrins are naturally occurring cyclic oligosaccharides consisting of glucose units. The main feature of cyclodextrins is the ability to accommodate various lipophilic compounds in their interior, which determines them to be popular helpers to the mankind. However, there is still a demand for new derivatives for advanced applications. Herein, we report the synthesis of β-cyclodextrin–pyrrole conjugates. Their preparation is based on an amide bond formation or copper(I)-catalysed azide-alkyne cycloaddition between β-cyclodextrin and pyrrole derivatives. The main advantage of the synthetic approach lies in the possibility to attach the substituent in β-position, because polypyrroles possessing a substituent in this position are generally more conductive than the N-substituted ones. Moreover, the presented synthetic route is general and allows tuning the properties (various types of connections and lengths) of a linker. The presented cyclodextrin–pyrrole derivatives thus open the door for new applications in the field of sensors or tissue engineering.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4


  1. 1.

    Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., Sharma, P.: Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5, 15233–15266 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Walsh, C.T., Garneau-Tsodikova, S., Howard-Jones, A.R.: Biological formation of pyrroles: nature’s logic and enzymatic machinery. Nat. Prod. Rep. 23, 517–531 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Huang, Y., Li, H., Wang, Z., Zhu, M., Pei, Z., Xue, Q., Huang, Y., Zhi, C.: Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 22, 422–438 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Yuan, X., Ding, X.-L., Wang, C.-Y., Ma, Z.-F.: Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ. Sci. 6, 1105–1124 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Setka, M., Drbohlavova, J., Hubalek, J.: Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors. 17, 562 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Ateh, D.D., Navsaria, H.A., Vadgama, P.: Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface. 3, 741–752 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bendrea, A.-D., Cianga, L., Cianga, I.: Review paper: progress in the field of conducting polymers for tissue engineering applications. J. Biomater. Appl. 26, 3–84 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mao, J., Li, C., Park, H.J., Rouabhia, M., Zhang, Z.: Conductive polymer waving in liquid nitrogen. ACS Nano. 11, 10409–10416 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Izaoumen, N., Bouchta, D., Zejli, H., El Kaoutit, M., Stalcup, A.M., Temsamani, K.R.: Electrosynthesis and analytical performances of functionalized poly (pyrrole/beta-cyclodextrin) films. Talanta. 66, 111–117 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Shang, F., Zhou, L., Mahmoud, K.A., Hrapovic, S., Liu, Y., Moynihan, H.A., Glennon, J.D., Luong, J.H.T.: Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-beta-cyclodextrin-doped poly(N-acetyltyramine) and polypyrrole composite film. Anal. Chem. 81, 4089–4098 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wajs, E., Fernández, N., Fragoso, A.: Supramolecular biosensors based on electropolymerised pyrrole–cyclodextrin modified surfaces for antibody detection. Analyst. 141, 3274–3279 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Palanisamy, S., Thangavelu, K., Chen, S.-M., Velusamy, V., Chang, M.-H., Chen, T.-W., Al-Hemaid, F.M.A., Ali, M.A., Ramaraj, S.K.: Synthesis and characterization of polypyrrole decorated graphene/beta-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B. 243, 888–894 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Řezanka, M.: Monosubstituted cyclodextrins as precursors for further use. Eur. J. Org. Chem. 2016, 5322–5334 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Řezanka, M.: Synthesis of substituted cyclodextrins. Environ. Chem. Lett. (2018).

    Article  Google Scholar 

  15. 15.

    Fritea, L., Gorgy, K., Le Goff, A., Audebert, P., Galmiche, L., Sandulescu, R., Cosnier, S.: Fluorescent and redox tetrazine films by host-guest immobilization of tetrazine derivatives within poly(pyrrole-beta-cyclodextrin) films. J. Electroanal. Chem. 781, 36–40 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Deronzier, A., Moutet, J.C.: Polypyrrole films containing metal complexes: Syntheses and applications. Coord. Chem. Rev. 147, 339–371 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    Trippé, G., Le Derf, F., Lyskawa, J., Mazari, M., Roncali, J., Gorgues, A., Levillain, E., Sallé, M.: Crown-tetrathiafulvalenes attached to a pyrrole or an EDOT unit: synthesis, electropolymerization and recognition properties. Chemistry. 10, 6497–6509 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Guernion, N.J.L., Hayes, W.: 3-and 3,4-substituted pyrroles and thiophenes and their corresponding polymers: a review. Curr. Org. Chem. 8, 637–651 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Jolicoeur, B., Chapman, E.E., Thompson, A., Lubell, W.D.: Pyrrole protection. Tetrahedron. 62, 11531–11563 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    Karsten, S., Nan, A., Turcu, R., Liebscher, J.: A new access to polypyrrole-based functionalized magnetic core-shell nanoparticles. J. Polym. Sci. Part A. 50, 3986–3995 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Bunrit, A., Sawadjoon, S., Tsupova, S., Sjoberg, P.J.R., Samec, J.S.M.: A general route to beta-substituted pyrroles by transition-metal catalysis. J. Org. Chem. 81, 1450–1460 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Huisgen, R.: 1.3-dipolare cycloadditionen-ruckschau und ausblick. Angew. Chem. 75, 604–637 (1963).

    CAS  Article  Google Scholar 

  23. 23.

    Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem.-Int. Ed. 40, 2004–2021 (2001)<2004::AID-ANIE2004>3.0.CO;2-5

    CAS  Article  Google Scholar 

  24. 24.

    Yadav, J.S., Reddy, B.V.S., Reddy, P.M., Srinivas, C.: Zinc-mediated Barbier reactions of pyrrole and indoles: a new method for the alkylation of pyrrole and indoles. Tetrahedron Lett. 43, 5185–5187 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Bray, B., Mathies, P., Naef, R., Solas, D., Tidwell, T., Artis, D., Muchowski, J.: N-(triisopropylsilyl)pyrrole: a progenitor par excellence of 3-substituted pyrroles. J. Org. Chem. 55, 6317–6328 (1990).

    CAS  Article  Google Scholar 

  26. 26.

    Sonogashira, K., Tohda, Y., Hagihara, N.: A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975).

    Article  Google Scholar 

  27. 27.

    Alvarez, A., Guzman, A., Ruiz, A., Velarde, E., Muchowski, J.: Synthesis of 3-arylpyrroles and 3-pyrrolylacetylenes by palladium-catalyzed coupling reactions. J. Org. Chem. 57, 1653–1656 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    Tamao, K., Sumitani, K., Kumada, M.: Selective carbon–carbon bond formation by cross-coupling of grignard-reagents with organic halides-catalysis by nickel-phosphine complexes. J. Am. Chem. Soc. 94, 4374–4376 (1972).

    CAS  Article  Google Scholar 

  29. 29.

    Heravi, M.M., Hajiabbasi, P.: Recent advances in Kumada-Tamao-Corriu cross-coupling reaction catalyzed by different ligands. Monatshefte Chem. 143, 1575–1592 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Cheung, C.W., Ren, P., Hu, X.: Mild and phosphine-free iron-catalyzed cross-coupling of nonactivated secondary alkyl halides with alkynyl grignard reagents. Org. Lett. 16, 2566–2569 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ren, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R., Hu, X.: Pd, Pt, and Ru complexes of a pincer bis(amino)amide ligand. Dalton Trans. 40, 8906–8911 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Eckhardt, M., Fu, G.C.: The first applications of carbene ligands in cross-couplings of alkyl electrophiles: sonogashira reactions of unactivated alkyl bromides and iodides. J. Am. Chem. Soc. 125, 13642–13643 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Csok, Z., Vechorkin, O., Harkins, S.B., Scopelliti, R., Hu, X.: Nickel complexes of a pincer NN(2) ligand: Multiple carbon-chloride activation of CH(2)Cl(2) and CHCl(3) leads to selective carbon-carbon bond formation. J. Am. Chem. Soc. 130, 8156–8157 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Saito, B., Fu, G.C.: Alkyl-alkyl Suzuki cross-couplings of unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 129, 9602–9603 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Corey, E.J., Fuchs, P.L.: A synthetic method for formyl→ethynyl conversion (RCHO→RC CH or RC CR′). Tetrahedron Lett. 13, 3769–3772 (1972).

    Article  Google Scholar 

  36. 36.

    Kornblum, N., Jones, W., Anderson, G.: A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc. 81, 4113–4114 (1959).

    CAS  Article  Google Scholar 

  37. 37.

    Dave, P., Byun, H., Engel, R.: An improved direct oxidation of alkyl-halides to aldehydes. Synth. Commun. 16, 1343–1346 (1986).

    CAS  Article  Google Scholar 

  38. 38.

    Tang, W., Ng, S.-C.: Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nat. Protoc. 3, 691–697 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chmurski, K., Stepniak, P., Jurczak, J.: Improved synthesis of C2 and C6 monoderivatives of alpha- and beta-cyclodextrin via the click chemistry approach. Synthesis. 47, 1838–1843 (2015).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Project LO1201 of the Ministry of Education, Youth and Sports in the framework of the targeted support of the “National Programme for Sustainability I” (Lukášek, Stibor, Řezanka); by the Project 16-02316Y of the Czech Science Foundation (Lukášek, Řezanka); and SGS Project No. 21176/115 of the Technical University of Liberec (Lukášek).

Author information



Corresponding author

Correspondence to Michal Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary data file features copies of NMR (1H, 13C) and HRMS spectra of all new pyrrole derivatives prepared. Supplementary material 1 (PDF 2277 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukášek, J., Řezanková, M., Stibor, I. et al. Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers. J Incl Phenom Macrocycl Chem 92, 339–346 (2018).

Download citation


  • β-Substitution
  • Amide
  • Click chemistry
  • Cyclodextrin
  • Pyrrole