Skip to main content

Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers

Abstract

Cyclodextrins are naturally occurring cyclic oligosaccharides consisting of glucose units. The main feature of cyclodextrins is the ability to accommodate various lipophilic compounds in their interior, which determines them to be popular helpers to the mankind. However, there is still a demand for new derivatives for advanced applications. Herein, we report the synthesis of β-cyclodextrin–pyrrole conjugates. Their preparation is based on an amide bond formation or copper(I)-catalysed azide-alkyne cycloaddition between β-cyclodextrin and pyrrole derivatives. The main advantage of the synthetic approach lies in the possibility to attach the substituent in β-position, because polypyrroles possessing a substituent in this position are generally more conductive than the N-substituted ones. Moreover, the presented synthetic route is general and allows tuning the properties (various types of connections and lengths) of a linker. The presented cyclodextrin–pyrrole derivatives thus open the door for new applications in the field of sensors or tissue engineering.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

References

  1. 1.

    Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., Sharma, P.: Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5, 15233–15266 (2015). https://doi.org/10.1039/c4ra15710a

    CAS  Article  Google Scholar 

  2. 2.

    Walsh, C.T., Garneau-Tsodikova, S., Howard-Jones, A.R.: Biological formation of pyrroles: nature’s logic and enzymatic machinery. Nat. Prod. Rep. 23, 517–531 (2006). https://doi.org/10.1039/b605245m

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Huang, Y., Li, H., Wang, Z., Zhu, M., Pei, Z., Xue, Q., Huang, Y., Zhi, C.: Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 22, 422–438 (2016). https://doi.org/10.1016/j.nanoen.2016.02.047

    CAS  Article  Google Scholar 

  4. 4.

    Yuan, X., Ding, X.-L., Wang, C.-Y., Ma, Z.-F.: Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ. Sci. 6, 1105–1124 (2013). https://doi.org/10.1039/c3ee23520c

    CAS  Article  Google Scholar 

  5. 5.

    Setka, M., Drbohlavova, J., Hubalek, J.: Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors. 17, 562 (2017). https://doi.org/10.3390/s17030562

    CAS  Article  Google Scholar 

  6. 6.

    Ateh, D.D., Navsaria, H.A., Vadgama, P.: Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface. 3, 741–752 (2006). https://doi.org/10.1098/rsif.2006.0141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bendrea, A.-D., Cianga, L., Cianga, I.: Review paper: progress in the field of conducting polymers for tissue engineering applications. J. Biomater. Appl. 26, 3–84 (2011). https://doi.org/10.1177/0885328211402704

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mao, J., Li, C., Park, H.J., Rouabhia, M., Zhang, Z.: Conductive polymer waving in liquid nitrogen. ACS Nano. 11, 10409–10416 (2017). https://doi.org/10.1021/acsnano.7b05546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Izaoumen, N., Bouchta, D., Zejli, H., El Kaoutit, M., Stalcup, A.M., Temsamani, K.R.: Electrosynthesis and analytical performances of functionalized poly (pyrrole/beta-cyclodextrin) films. Talanta. 66, 111–117 (2005). https://doi.org/10.1016/j.talanta.2004.10.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Shang, F., Zhou, L., Mahmoud, K.A., Hrapovic, S., Liu, Y., Moynihan, H.A., Glennon, J.D., Luong, J.H.T.: Selective nanomolar detection of dopamine using a boron-doped diamond electrode modified with an electropolymerized sulfobutylether-beta-cyclodextrin-doped poly(N-acetyltyramine) and polypyrrole composite film. Anal. Chem. 81, 4089–4098 (2009). https://doi.org/10.1021/ac900368m

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wajs, E., Fernández, N., Fragoso, A.: Supramolecular biosensors based on electropolymerised pyrrole–cyclodextrin modified surfaces for antibody detection. Analyst. 141, 3274–3279 (2016). https://doi.org/10.1039/C6AN00532B

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Palanisamy, S., Thangavelu, K., Chen, S.-M., Velusamy, V., Chang, M.-H., Chen, T.-W., Al-Hemaid, F.M.A., Ali, M.A., Ramaraj, S.K.: Synthesis and characterization of polypyrrole decorated graphene/beta-cyclodextrin composite for low level electrochemical detection of mercury (II) in water. Sens. Actuators B. 243, 888–894 (2017). https://doi.org/10.1016/j.snb.2016.12.068

    CAS  Article  Google Scholar 

  13. 13.

    Řezanka, M.: Monosubstituted cyclodextrins as precursors for further use. Eur. J. Org. Chem. 2016, 5322–5334 (2016). https://doi.org/10.1002/ejoc.201600693

    CAS  Article  Google Scholar 

  14. 14.

    Řezanka, M.: Synthesis of substituted cyclodextrins. Environ. Chem. Lett. (2018). https://doi.org/10.1007/s10311-018-0779-7

    Article  Google Scholar 

  15. 15.

    Fritea, L., Gorgy, K., Le Goff, A., Audebert, P., Galmiche, L., Sandulescu, R., Cosnier, S.: Fluorescent and redox tetrazine films by host-guest immobilization of tetrazine derivatives within poly(pyrrole-beta-cyclodextrin) films. J. Electroanal. Chem. 781, 36–40 (2016). https://doi.org/10.1016/j.jelechem.2016.07.010

    CAS  Article  Google Scholar 

  16. 16.

    Deronzier, A., Moutet, J.C.: Polypyrrole films containing metal complexes: Syntheses and applications. Coord. Chem. Rev. 147, 339–371 (1996). https://doi.org/10.1016/0010-8545(95)01130-7

    CAS  Article  Google Scholar 

  17. 17.

    Trippé, G., Le Derf, F., Lyskawa, J., Mazari, M., Roncali, J., Gorgues, A., Levillain, E., Sallé, M.: Crown-tetrathiafulvalenes attached to a pyrrole or an EDOT unit: synthesis, electropolymerization and recognition properties. Chemistry. 10, 6497–6509 (2004). https://doi.org/10.1002/chem.200400303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Guernion, N.J.L., Hayes, W.: 3-and 3,4-substituted pyrroles and thiophenes and their corresponding polymers: a review. Curr. Org. Chem. 8, 637–651 (2004). https://doi.org/10.2174/1385272043370771

    CAS  Article  Google Scholar 

  19. 19.

    Jolicoeur, B., Chapman, E.E., Thompson, A., Lubell, W.D.: Pyrrole protection. Tetrahedron. 62, 11531–11563 (2006). https://doi.org/10.1016/j.tet.2006.08.071

    CAS  Article  Google Scholar 

  20. 20.

    Karsten, S., Nan, A., Turcu, R., Liebscher, J.: A new access to polypyrrole-based functionalized magnetic core-shell nanoparticles. J. Polym. Sci. Part A. 50, 3986–3995 (2012). https://doi.org/10.1002/pola.26193

    CAS  Article  Google Scholar 

  21. 21.

    Bunrit, A., Sawadjoon, S., Tsupova, S., Sjoberg, P.J.R., Samec, J.S.M.: A general route to beta-substituted pyrroles by transition-metal catalysis. J. Org. Chem. 81, 1450–1460 (2016). https://doi.org/10.1021/acs.joc.5b02581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Huisgen, R.: 1.3-dipolare cycloadditionen-ruckschau und ausblick. Angew. Chem. 75, 604–637 (1963). https://doi.org/10.1002/ange.19630751304

    CAS  Article  Google Scholar 

  23. 23.

    Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem.-Int. Ed. 40, 2004–2021 (2001) https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    CAS  Article  Google Scholar 

  24. 24.

    Yadav, J.S., Reddy, B.V.S., Reddy, P.M., Srinivas, C.: Zinc-mediated Barbier reactions of pyrrole and indoles: a new method for the alkylation of pyrrole and indoles. Tetrahedron Lett. 43, 5185–5187 (2002). https://doi.org/10.1016/S0040-4039(02)00971-1

    CAS  Article  Google Scholar 

  25. 25.

    Bray, B., Mathies, P., Naef, R., Solas, D., Tidwell, T., Artis, D., Muchowski, J.: N-(triisopropylsilyl)pyrrole: a progenitor par excellence of 3-substituted pyrroles. J. Org. Chem. 55, 6317–6328 (1990). https://doi.org/10.1021/jo00313a019

    CAS  Article  Google Scholar 

  26. 26.

    Sonogashira, K., Tohda, Y., Hagihara, N.: A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975). https://doi.org/10.1016/S0040-4039(00)91094-3

    Article  Google Scholar 

  27. 27.

    Alvarez, A., Guzman, A., Ruiz, A., Velarde, E., Muchowski, J.: Synthesis of 3-arylpyrroles and 3-pyrrolylacetylenes by palladium-catalyzed coupling reactions. J. Org. Chem. 57, 1653–1656 (1992). https://doi.org/10.1021/jo00032a011

    CAS  Article  Google Scholar 

  28. 28.

    Tamao, K., Sumitani, K., Kumada, M.: Selective carbon–carbon bond formation by cross-coupling of grignard-reagents with organic halides-catalysis by nickel-phosphine complexes. J. Am. Chem. Soc. 94, 4374–4376 (1972). https://doi.org/10.1021/ja00767a075

    CAS  Article  Google Scholar 

  29. 29.

    Heravi, M.M., Hajiabbasi, P.: Recent advances in Kumada-Tamao-Corriu cross-coupling reaction catalyzed by different ligands. Monatshefte Chem. 143, 1575–1592 (2012). https://doi.org/10.1007/s00706-012-0838-x

    CAS  Article  Google Scholar 

  30. 30.

    Cheung, C.W., Ren, P., Hu, X.: Mild and phosphine-free iron-catalyzed cross-coupling of nonactivated secondary alkyl halides with alkynyl grignard reagents. Org. Lett. 16, 2566–2569 (2014). https://doi.org/10.1021/ol501087m

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ren, P., Vechorkin, O., Csok, Z., Salihu, I., Scopelliti, R., Hu, X.: Pd, Pt, and Ru complexes of a pincer bis(amino)amide ligand. Dalton Trans. 40, 8906–8911 (2011). https://doi.org/10.1039/c1dt10195a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Eckhardt, M., Fu, G.C.: The first applications of carbene ligands in cross-couplings of alkyl electrophiles: sonogashira reactions of unactivated alkyl bromides and iodides. J. Am. Chem. Soc. 125, 13642–13643 (2003). https://doi.org/10.1021/ja038177r

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Csok, Z., Vechorkin, O., Harkins, S.B., Scopelliti, R., Hu, X.: Nickel complexes of a pincer NN(2) ligand: Multiple carbon-chloride activation of CH(2)Cl(2) and CHCl(3) leads to selective carbon-carbon bond formation. J. Am. Chem. Soc. 130, 8156–8157 (2008). https://doi.org/10.1021/ja8025938

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Saito, B., Fu, G.C.: Alkyl-alkyl Suzuki cross-couplings of unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 129, 9602–9603 (2007). https://doi.org/10.1021/ja074008l

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Corey, E.J., Fuchs, P.L.: A synthetic method for formyl→ethynyl conversion (RCHO→RC CH or RC CR′). Tetrahedron Lett. 13, 3769–3772 (1972). https://doi.org/10.1016/S0040-4039(01)94157-7

    Article  Google Scholar 

  36. 36.

    Kornblum, N., Jones, W., Anderson, G.: A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes. J. Am. Chem. Soc. 81, 4113–4114 (1959). https://doi.org/10.1021/ja01524a080

    CAS  Article  Google Scholar 

  37. 37.

    Dave, P., Byun, H., Engel, R.: An improved direct oxidation of alkyl-halides to aldehydes. Synth. Commun. 16, 1343–1346 (1986). https://doi.org/10.1080/00397918608056381

    CAS  Article  Google Scholar 

  38. 38.

    Tang, W., Ng, S.-C.: Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nat. Protoc. 3, 691–697 (2008). https://doi.org/10.1038/nprot.2008.37

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chmurski, K., Stepniak, P., Jurczak, J.: Improved synthesis of C2 and C6 monoderivatives of alpha- and beta-cyclodextrin via the click chemistry approach. Synthesis. 47, 1838–1843 (2015). https://doi.org/10.1055/s-0034-1380701

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project LO1201 of the Ministry of Education, Youth and Sports in the framework of the targeted support of the “National Programme for Sustainability I” (Lukášek, Stibor, Řezanka); by the Project 16-02316Y of the Czech Science Foundation (Lukášek, Řezanka); and SGS Project No. 21176/115 of the Technical University of Liberec (Lukášek).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Řezanka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2018_854_MOESM1_ESM.pdf

Supplementary data file features copies of NMR (1H, 13C) and HRMS spectra of all new pyrrole derivatives prepared. Supplementary material 1 (PDF 2277 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukášek, J., Řezanková, M., Stibor, I. et al. Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers. J Incl Phenom Macrocycl Chem 92, 339–346 (2018). https://doi.org/10.1007/s10847-018-0854-5

Download citation

Keywords

  • β-Substitution
  • Amide
  • Click chemistry
  • Cyclodextrin
  • Pyrrole